1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright (C) 2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>

#include <exceptions/exceptions.h>
#include <exceptions/isc_assert.h>
#include <util/encode/encode.h>

#include <iostream><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <stdint.h><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <stdexcept><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <string><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <cstring><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <vector><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.

using namespace std;

namespace isc {
namespace util {
namespace encode {

BaseNEncoder::BaseNEncoder(const std::string& algorithm,
                           const char* digit_set,
                           const std::vector<uint8_t>& bits_table,
                           size_t bits_per_digit,
                           size_t digits_per_group,
                           const char pad_char,
                           size_t max_pad,
                           bool case_sensitive)
     : algorithm_(algorithm),
       digit_set_(digit_set),
       bits_table_(bits_table),
       bits_per_digit_(bits_per_digit),
       digits_per_group_(digits_per_group),
       pad_char_(pad_char),
       max_pad_(max_pad),
       case_sensitive_(case_sensitive),
       max_bits_to_digit_(strlen(digit_set) - 1),
       max_digit_to_bits_(bits_table_.size() - 1) {
}

char
BaseNEncoder::bitsToDigit(uint8_t bits) {
    if (bits > max_bits_to_digit_) {
        isc_throw(BadValue, "Digit bits : "
                  << static_cast<uint16_t>(bits) << " invalid for " << algorithm_);
    }

    return (digit_set_[bits]);
}

uint8_t
BaseNEncoder::digitToBits(uint8_t digit) {
    if (digit > max_digit_to_bits_) {
        isc_throw(BadValue, "Digit exceeds look up table: "
                  << static_cast<uint16_t>(digit) << " for " << algorithm_);
    }

    return (bits_table_[digit]);
}

std::string
BaseNEncoder::encode(const std::vector<uint8_t>& input) {
    std::string encoded_output;
    if (input.empty()) {
        return (encoded_output);
    }

    // Iterate over the input bytes as a bit stream.  We add input bits
    // to a digit set index value until we have enough (bits_per_digit).  We
    // look up a digit in the digit set add it to the encoded output and start over
    // on the next index value.  When we have exhausted the bits in the current
    // byte, get the next byte from input and continue.  In other words, we pull bits
    // from the left side of the input bit stream and push them into the right side of
    // the index value.  Each time we have done bits_per_digit bits we look up
    // the digit and start the index value over.

    int digit_idx = 0;          // Digit index we are currently constructing.
    size_t cnt = 0;             // How many bits we have in the current digit idx
    int cur_byte = 0;           // Current input byte.
    uint8_t cur_bit_mask = 0x0; // Bitmask of the current bit in the current byte.
    auto bytes = input.begin(); // Start with the first byte.
    while (1) {
        // If the current bitmask is zero, it's time for the next input byte.
        if (!cur_bit_mask) {
            if (bytes == input.end()) {
                break;
            }

            // Grab the next byte.
            cur_byte = *bytes;
            // Start at the bitmask at the left-most bit.
            cur_bit_mask = 0x80;
            // Bump the iterator.
            ++bytes;
        }

        // Do we need more bits in this digit index?
        if (cnt < bits_per_digit_) {
            // Yes, so shift the index over to make room for the next bit.
            digit_idx <<= 1;
        } else {
            // No, the index is complete, lookup its digit and add it to the
            // output. Start over for the next index.
            encoded_output.push_back(bitsToDigit(digit_idx));
            digit_idx = 0;
            cnt = 0;
        }

        // If the current bit in the current byte is set,
        // set the right-most digit index bit to 1 (otherwise
        // its left as zero).
        if (cur_byte & cur_bit_mask) {
            digit_idx |= 1;
        }

        // Shift the cur_bit mask to select the next input bit and
        // bump the number of bits in the current index.
        cur_bit_mask >>= 1;
        ++cnt;
    }

    // We've exhausted the input bits but have bits in the
    // digit index.  This means the remaining bits in our
    // last index are zeros (pad bits).  Shift "in" the
    // required number of bits and add the corresponding
    // digit.
    digit_idx <<= (bits_per_digit_ - cnt);
    encoded_output.push_back(bitsToDigit(digit_idx));

    // Add padding as needed.
    if (digits_per_group_) {
        auto rem = encoded_output.size() % digits_per_group_;
        if (rem) {
            auto need = digits_per_group_ - rem;
            while (need--) {
                encoded_output.push_back(pad_char_);
            }
        }
    }

    return (encoded_output);
}

void
BaseNEncoder::decode(const std::string& encoded_str, std::vector<uint8_t>& output) {

    // Mechanics are essentially the same as encode(). We iterate over the encoded
    // string's digits, discarding whitespaces. We lookup the digit's binary value
    // in the lookup table, keeping only binary value's right-most, bits_per_digit bits.
    // The remaining bits are then shifted out from the left of binary value into the
    // right of the currently accumulating output byte until the byte is complete
    // (8 bits) or the value's bits are exhausted.  Completed bytes are added to the
    // output buffer.  We continue building bytes until we've exhausted the encoded
    // string.

    output.clear();
    size_t dig_cnt = 0;                       // Tracks how many encoded digits we see.
    size_t pad_cnt = 0;                       // Tracks how many pad characters we see.
    size_t shift_bits = 8 - bits_per_digit_;  // Number of unused bits in digit data values.
    uint8_t cur_byte = 0;                     // Current output byte.
    size_t cur_bit_cnt = 0;                   // How man bits we have added to the current byte.

    for (const auto enc_digit : encoded_str) {
        // If it's a pad char, count it and go on.
        if (pad_char_ && enc_digit == pad_char_) {
           pad_cnt++;
           continue;
        }

        // Translate the encoded digit to its binary bits.
        uint8_t dig_bits = digitToBits(enc_digit);

        // Skip whitespace. The choice of 0xee to signify white-space was arbitrary.
        if (dig_bits == 0xee) {
            continue;
        }

        // Error on invalid characters.
        if (dig_bits == 0xff) {
            isc_throw(isc::BadValue, "attempt to decode a value not in "
                      << algorithm_ << " char set" << ": " << encoded_str);
        }

        // Error if pad characters occur in the middle.
        if (pad_cnt) {
            isc_throw(isc::BadValue, "pad mixed with digits in "
                      << algorithm_ << ": " << encoded_str);
        }

        // Bump the valid character count.
        dig_cnt++;

        // Shift off the unused bits.
        dig_bits <<= shift_bits;

        // Add digit's decoded bits to current byte.
        for (size_t i = 0; i < bits_per_digit_; ++i) {
            if (cur_bit_cnt < 8) {
                // Shift contents over one to make room for next bit.
                cur_byte <<= 1;
            } else {
                // Add the completed byte to the output.
                output.push_back(cur_byte);
                cur_byte = 0;
                cur_bit_cnt = 0;
            }

            // Add the next bit if its set.
            if (dig_bits & 0x80) {
                cur_byte |= 1;
            }

            // Shift the decoded bits over.
            dig_bits <<= 1;

            // Update the current byte bit count.
            ++cur_bit_cnt;
        }
    }

    if (cur_bit_cnt == 8) {
        // Whole one left to add.
        output.push_back(cur_byte);
    } else if (cur_bit_cnt && cur_byte) {
        // Left over bits that are not zero.
        isc_throw(BadValue, "non-zero bits left over " << encoded_str);
    }

    if (pad_char_) {
        // Check for too many pad characters.
        if (pad_cnt > max_pad_) {
            isc_throw(isc::BadValue, "too many pad characters for "
                      << algorithm_ << ": " << encoded_str);
        }

        // Check for an invalid number of pad bits.
        // Calculate the number of pad bits corresponding to the pad
        // characters.  In general, the pad bits consist of all-zero
        // trailing bits of the last encoded character plus the zero bits
        // represented by each pad character.
        // 1st pad  2nd pad  3rd pad...
        // +++===== =======  ===...    (+: from encoded chars, =: from pad chars)
        // 0000...0 0......0 000...
        // 0      7 8     15 16.... (bits)
        // The number of bits for the '==...' part is padchars * BitsPerChunk.
        // So the total number of pad bits is the smallest multiple of 8
        // that is >= padchars * BitsPerChunk.
        // (Below, note the common idiom of the bitwise AND with ~0x7.  It clears the
        // lowest three bits, so has the effect of rounding the result down to the
        // nearest multiple of 8)
        const size_t padbits = ((pad_cnt * bits_per_digit_) + 7) & ~0x7;
        if (padbits > bits_per_digit_ * (pad_cnt + 1)) {
            isc_throw(isc::BadValue, "Invalid padding for "
                      << algorithm_ << ": " << encoded_str);
        }
    }

    // Check for an invalid total of encoded characters.
    if ((pad_cnt + dig_cnt) % digits_per_group_) {
        isc_throw (isc::BadValue, "Incomplete input for "
                   << algorithm_ << ": " << encoded_str);
    }
}

const char* Base64Encoder::DIGIT_SET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                                       "abcdefghijklmnopqrstuvwxyz"
                                       "0123456789"
                                       "+/";

const std::vector<uint8_t> Base64Encoder::BITS_TABLE = {
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xee,0xee,0xee,0xee,0xee,0xff,0xff, // 00-0f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 10-1f
    0xee,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,62,0xff,0xff,0xff,63,     // 20-2f
    52,53,54,55,56,57,58,59,60,61,0xff,0xff,0xff, 0,0xff,0xff,                       // 30-3f
    0xff, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,                               // 40-4f
    15,16,17,18,19,20,21,22,23,24,25,0xff,0xff,0xff,0xff,0xff,                       // 50-5f
    0xff,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,                               // 60-6f
    41,42,43,44,45,46,47,48,49,50,51,0xff,0xff,0xff,0xff,0xff,                       // 70-7f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 80-8f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 90-9f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // a0-af
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // b0-bf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // c0-cf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // d0-df
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // e0-ef
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff  // f0-ff,
};

const char* Base32HexEncoder::DIGIT_SET = "0123456789ABCDEFGHIJKLMNOPQRSTUV";

const std::vector<uint8_t> Base32HexEncoder::BITS_TABLE = {
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xee,0xee,0xee,0xee,0xee,0xff,0xff, // 00-0f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 10-1f
    0xee,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 20-2f
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9,0xff,0xff,0xff,0xff,0xff,0xff,                      // 30-3f
    0xff,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,                               // 40-4f
    25,26,27,28,29,30,31,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,               // 50-5f
    0xff,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,                               // 60-6f
    25,26,27,28,29,30,31,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,               // 70-7f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 80-8f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 90-9f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // a0-af
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // b0-bf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // c0-cf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // d0-df
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // e0-ef
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff  // f0-ff
};

const char* Base16Encoder::DIGIT_SET = "0123456789ABCDEF";

const std::vector<uint8_t> Base16Encoder::BITS_TABLE = {
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xee,0xee,0xee,0xee,0xee,0xff,0xff, // 00-0f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 10-1f
    0xee,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 20-2f
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9,0xff,0xff,0xff,0xff,0xff,0xff,                      // 30-3f
    0xff,10,11,12,13,14,15,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,             // 40-4f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 50-5f
    0xff,10,11,12,13,14,15,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,             // 60-6f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 70-7f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 80-8f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // 90-9f
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // a0-af
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // b0-bf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // c0-cf
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // d0-df
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, // e0-ef
    0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff  // f0-ff
};

string
encodeBase64(const vector<uint8_t>& binary) {
    static Base64Encoder encoder;
    return (encoder.encode(binary));
}

void
decodeBase64 (const std::string& encoded_str, std::vector<uint8_t>& output) {
    static Base64Encoder encoder;
    encoder.decode(encoded_str, output);
}

string
encodeBase32Hex(const vector<uint8_t>& binary) {
    static Base32HexEncoder encoder;
    return (encoder.encode(binary));
}

void
decodeBase32Hex(const std::string& encoded_str, std::vector<uint8_t>& output) {
    static Base32HexEncoder encoder;
    encoder.decode(encoded_str, output);
}

string
encodeHex(const vector<uint8_t>& binary) {
    static Base16Encoder encoder;
    return (encoder.encode(binary));
}

void
decodeHex(const string& encoded_str, vector<uint8_t>& output) {
    static Base16Encoder encoder;
    encoder.decode(encoded_str, output);
}

} // namespace encode
} // namespace util
} // namespace isc