1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright (C) 2011-2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>

#include <exceptions/exceptions.h>
#include <exceptions/isc_assert.h>
#include <cryptolink/cryptolink.h>
#include <cryptolink/crypto_hmac.h>
#include <dns/rdataclass.h>
#include <dns/rrclass.h>
#include <dns/time_utils.h>
#include <dns/tsig.h>
#include <dns/tsigerror.h>
#include <dns/tsigkey.h>
#include <util/buffer.h>

#include <cassert><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <sys/time.h><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <stdint.h><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <vector><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <boost/shared_ptr.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.

using namespace isc::util;
using namespace isc::cryptolink;
using namespace isc::dns::rdata;

using namespace std;


namespace isc {
namespace dns {
namespace {
typedef boost::shared_ptr<HMAC> HMACPtr;

// TSIG uses 48-bit unsigned integer to represent time signed.
// Since getTimeWrapper() returns a 64-bit *signed* integer, we
// make sure it's stored in an unsigned 64-bit integer variable and
// represents a value in the expected range.  (In reality, however,
// getTimeWrapper() will return a positive integer that will fit
// in 48 bits)
uint64_t
getTSIGTime() {
    return (detail::getTimeWrapper() & 0x0000ffffffffffffULL);
}
}

struct TSIGContext::TSIGContextImpl {
    TSIGContextImpl(const TSIGKey& key,
                    TSIGError error = TSIGError::NOERROR()) :
        state_(INIT), key_(key), error_(error),
        previous_timesigned_(0), digest_len_(0),
        last_sig_dist_(-1) {
        if (error == TSIGError::NOERROR()) {
            // In normal (NOERROR) case, the key should be valid, and we
            // should be able to pre-create a corresponding HMAC object,
            // which will be likely to be used for sign or verify later.
            // We do this in the constructor so that we can know the expected
            // digest length in advance.  The creation should normally succeed,
            // but the key information could be still broken, which could
            // trigger an exception inside the cryptolink module.  We ignore
            // it at this moment; a subsequent sign/verify operation will try
            // to create the HMAC, which would also fail.
            try {
                hmac_.reset(CryptoLink::getCryptoLink().createHMAC(
                                key_.getSecret(), key_.getSecretLength(),
                                key_.getAlgorithm()),
                                deleteHMAC);
            } catch (const isc::Exception&) {
                return;
            }
            size_t digestbits = key_.getDigestbits();
            size_t default_digest_len = hmac_->getOutputLength();
            if (digestbits > 0) {
                digest_len_ = (digestbits + 7) / 8;
                // sanity (cf. RFC 4635)
                if ((digest_len_ < 10) ||
                    (digest_len_ < (default_digest_len / 2)) ||
                    (digest_len_ > default_digest_len)) {
                    // should emit a warning?
                    digest_len_ = default_digest_len;
                }
            } else {
                digest_len_ = default_digest_len;
            }
        }
    }

    // This helper method is used from verify().  It's expected to be called
    // just before verify() returns.  It updates internal state based on
    // the verification result and return the TSIGError to be returned to
    // the caller of verify(), so that verify() can call this method within
    // its 'return' statement.
    TSIGError postVerifyUpdate(TSIGError error, const void* digest,
                               uint16_t digest_len) {
        if (state_ == INIT) {
            state_ = RECEIVED_REQUEST;
        } else if (state_ == SENT_REQUEST && error == TSIGError::NOERROR()) {
            state_ = VERIFIED_RESPONSE;
        }
        if (digest) {
            previous_digest_.assign(static_cast<const uint8_t*>(digest),
                                    static_cast<const uint8_t*>(digest) +
                                    digest_len);
        }
        error_ = error;
        return (error);
    }

    // A shortcut method to create an HMAC object for sign/verify.  If one
    // has been successfully created in the constructor, return it; otherwise
    // create a new one and return it.  In the former case, the ownership is
    // transferred to the caller; the stored HMAC will be reset after the
    // call.
    HMACPtr createHMAC() {
        if (hmac_) {
            HMACPtr ret = HMACPtr();
            ret.swap(hmac_);
            return (ret);
        }
        return (HMACPtr(CryptoLink::getCryptoLink().createHMAC(
                            key_.getSecret(), key_.getSecretLength(),
                            key_.getAlgorithm()),
                        deleteHMAC));
    }

    // The following three are helper methods to compute the digest for
    // TSIG sign/verify in order to unify the common code logic for sign()
    // and verify() and to keep these callers concise.
    // These methods take an HMAC object, which will be updated with the
    // calculated digest.
    // Note: All methods construct a local OutputBuffer as a work space with a
    // fixed initial buffer size to avoid intermediate buffer extension.
    // This should be efficient enough, especially for fundamentally expensive
    // operation like cryptographic sign/verify, but if the creation of the
    // buffer in each helper method is still identified to be a severe
    // performance bottleneck, we could have this class a buffer as a member
    // variable and reuse it throughout the object's lifetime.  Right now,
    // we prefer keeping the scope for local things as small as possible.
    void digestPreviousMAC(HMACPtr hmac);
    void digestTSIGVariables(HMACPtr hmac, uint16_t rrclass, uint32_t rrttl,
                             uint64_t time_signed, uint16_t fudge,
                             uint16_t error, uint16_t otherlen,
                             const void* otherdata,
                             bool time_variables_only) const;
    void digestDNSMessage(HMACPtr hmac, uint16_t qid, const void* data,
                          size_t data_len) const;
    State state_;
    const TSIGKey key_;
    vector<uint8_t> previous_digest_;
    TSIGError error_;
    uint64_t previous_timesigned_; // only meaningful for response with BADTIME
    size_t digest_len_;
    HMACPtr hmac_;
    // This is the distance from the last verified signed message. Value of 0
    // means the last message was signed. Special value -1 means there was no
    // signed message yet.
    int last_sig_dist_;
};

void
TSIGContext::TSIGContextImpl::digestPreviousMAC(HMACPtr hmac) {
    // We should have ensured the digest size fits 16 bits within this class
    // implementation.
    isc_throw_assert(previous_digest_.size() <= 0xffff);

    if (previous_digest_.empty()) {<--- Assuming that condition 'previous_digest_.empty()' is not redundant
        // The previous digest was already used. We're in the middle of
        // TCP stream somewhere and we already pushed some unsigned message
        // into the HMAC state.
        return;
    }

    OutputBuffer buffer(sizeof(uint16_t) + previous_digest_.size());
    const uint16_t previous_digest_len(previous_digest_.size());<--- Assignment 'previous_digest_len(previous_digest_.size())', assigned value is greater than 0
    buffer.writeUint16(previous_digest_len);
    if (previous_digest_len != 0) {<--- Condition 'previous_digest_len!=0' is always true
        buffer.writeData(&previous_digest_[0], previous_digest_len);
    }
    hmac->update(buffer.getData(), buffer.getLength());
}

void
TSIGContext::TSIGContextImpl::digestTSIGVariables(HMACPtr hmac, uint16_t rrclass,
                                                  uint32_t rrttl, uint64_t time_signed,
                                                  uint16_t fudge, uint16_t error,
                                                  uint16_t otherlen, const void* otherdata,
                                                  bool time_variables_only) const {
    // It's bit complicated, but we can still predict the necessary size of
    // the data to be digested.  So we precompute it to avoid possible
    // reallocation inside OutputBuffer (not absolutely necessary, but this
    // is a bit more efficient)
    size_t data_size = 8;
    if (!time_variables_only) {
        data_size += 10 + key_.getKeyName().getLength() +
            key_.getAlgorithmName().getLength();
    }
    OutputBuffer buffer(data_size);

    if (!time_variables_only) {
        key_.getKeyName().toWire(buffer);
        buffer.writeUint16(rrclass);
        buffer.writeUint32(rrttl);
        key_.getAlgorithmName().toWire(buffer);
    }
    buffer.writeUint16(time_signed >> 32);
    buffer.writeUint32(time_signed & 0xffffffff);
    buffer.writeUint16(fudge);

    if (!time_variables_only) {
        buffer.writeUint16(error);
        buffer.writeUint16(otherlen);
    }

    hmac->update(buffer.getData(), buffer.getLength());
    if (!time_variables_only && otherlen > 0) {
        hmac->update(otherdata, otherlen);
    }
}

// In digestDNSMessage, we exploit some minimum knowledge of DNS message
// format:
// - the header section has a fixed length of 12 octets (MESSAGE_HEADER_LEN)
// - the offset in the header section to the ID field is 0
// - the offset in the header section to the ARCOUNT field is 10 (and the field
//   length is 2 octets)
// We could construct a separate Message object from the given data, adjust
// fields via the Message interfaces and then render it back to a separate
// buffer, but that would be overkilling.  The DNS message header has a
// fixed length and necessary modifications are quite straightforward, so
// we do the job using lower level interfaces.
namespace {
const size_t MESSAGE_HEADER_LEN = 12;
}

void
TSIGContext::TSIGContextImpl::digestDNSMessage(HMACPtr hmac,
                                               uint16_t qid, const void* data,
                                               size_t data_len) const {
    OutputBuffer buffer(MESSAGE_HEADER_LEN);
    const uint8_t* msgptr = static_cast<const uint8_t*>(data);

    // Install the original ID
    buffer.writeUint16(qid);
    msgptr += sizeof(uint16_t);

    // Copy the rest of the header except the ARCOUNT field.
    buffer.writeData(msgptr, 8);
    msgptr += 8;

    // Install the adjusted ARCOUNT (we don't care even if the value is bogus
    // and it underflows; it would simply result in verification failure)
    buffer.writeUint16(InputBuffer(msgptr, sizeof(uint16_t)).readUint16() - 1);
    msgptr += 2;

    // Digest the header and the rest of the DNS message
    hmac->update(buffer.getData(), buffer.getLength());
    hmac->update(msgptr, data_len - MESSAGE_HEADER_LEN);
}

TSIGContext::TSIGContext(const TSIGKey& key) : impl_(new TSIGContextImpl(key)) {
}

TSIGContext::TSIGContext(const Name& key_name, const Name& algorithm_name,
                         const TSIGKeyRing& keyring) : impl_(0) {
    const TSIGKeyRing::FindResult result(keyring.find(key_name,
                                                      algorithm_name));
    if (result.code == TSIGKeyRing::NOTFOUND) {
        // If not key is found, create a dummy key with the specified key
        // parameters and empty secret.  In the common scenario this will
        // be used in subsequent response with a TSIG indicating a BADKEY
        // error.
        impl_.reset(new TSIGContextImpl(TSIGKey(key_name, algorithm_name, 0, 0),
                                        TSIGError::BAD_KEY()));
    } else {
        impl_.reset(new TSIGContextImpl(*result.key));
    }
}

TSIGContext::~TSIGContext() {
}

size_t
TSIGContext::getTSIGLength() const {
    //
    // The space required for an TSIG record is:
    //
    //  n1 bytes for the (key) name
    //  2 bytes for the type
    //  2 bytes for the class
    //  4 bytes for the ttl
    //  2 bytes for the rdlength
    //  n2 bytes for the algorithm name
    //  6 bytes for the time signed
    //  2 bytes for the fudge
    //  2 bytes for the MAC size
    //  x bytes for the MAC
    //  2 bytes for the original id
    //  2 bytes for the error
    //  2 bytes for the other data length
    //  y bytes for the other data (at most)
    // ---------------------------------
    //     26 + n1 + n2 + x + y bytes
    //

    // Normally the digest length ("x") is the length of the underlying
    // hash output.  If a key related error occurred, however, the
    // corresponding TSIG will be "unsigned", and the digest length will be 0.
    const size_t digest_len =
        (impl_->error_ == TSIGError::BAD_KEY() ||
         impl_->error_ == TSIGError::BAD_SIG()) ? 0 : impl_->digest_len_;

    // Other Len ("y") is normally 0; if BAD_TIME error occurred, the
    // subsequent TSIG will contain 48 bits of the server current time.
    const size_t other_len = (impl_->error_ == TSIGError::BAD_TIME()) ? 6 : 0;

    return (26 + impl_->key_.getKeyName().getLength() +
            impl_->key_.getAlgorithmName().getLength() +
            digest_len + other_len);
}

TSIGContext::State
TSIGContext::getState() const {
    return (impl_->state_);
}

TSIGError
TSIGContext::getError() const {
    return (impl_->error_);
}

ConstTSIGRecordPtr
TSIGContext::sign(const uint16_t qid, const void* const data,
                  const size_t data_len) {
    if (impl_->state_ == VERIFIED_RESPONSE) {
        isc_throw(TSIGContextError,
                  "TSIG sign attempt after verifying a response");
    }

    if (!data || data_len == 0) {
        isc_throw(InvalidParameter, "TSIG sign error: empty data is given");
    }

    TSIGError error(TSIGError::NOERROR());
    const uint64_t now = getTSIGTime();

    // For responses adjust the error code.
    if (impl_->state_ == RECEIVED_REQUEST) {
        error = impl_->error_;
    }

    // For errors related to key or MAC, return an unsigned response as
    // specified in Section 4.3 of RFC2845.
    if (error == TSIGError::BAD_SIG() || error == TSIGError::BAD_KEY()) {
        ConstTSIGRecordPtr tsig(new TSIGRecord(
                                    impl_->key_.getKeyName(),
                                    any::TSIG(impl_->key_.getAlgorithmName(),
                                              now, DEFAULT_FUDGE, 0, 0,
                                              qid, error.getCode(), 0, 0)));
        impl_->previous_digest_.clear();
        impl_->state_ = SENT_RESPONSE;
        return (tsig);
    }

    HMACPtr hmac(impl_->createHMAC());

    // If the context has previous MAC (either the Request MAC or its own
    // previous MAC), digest it.
    if (impl_->state_ != INIT) {
        impl_->digestPreviousMAC(hmac);
    }

    // Digest the message (without TSIG)
    hmac->update(data, data_len);

    // Digest TSIG variables.
    // First, prepare some non constant variables.
    const uint64_t time_signed = (error == TSIGError::BAD_TIME()) ?
        impl_->previous_timesigned_ : now;
    // For BADTIME error, we include 6 bytes of other data.
    // (6 bytes = size of time signed value)
    const uint16_t otherlen = (error == TSIGError::BAD_TIME()) ? 6 : 0;
    OutputBuffer otherdatabuf(otherlen);
    if (error == TSIGError::BAD_TIME()) {
            otherdatabuf.writeUint16(now >> 32);
            otherdatabuf.writeUint32(now & 0xffffffff);
    }
    const void* const otherdata =
        (otherlen == 0) ? 0 : otherdatabuf.getData();
    // Then calculate the digest.  If state_ is SENT_RESPONSE we are sending
    // a continued message in the same TCP stream so skip digesting
    // variables except for time related variables (RFC2845 4.4).
    impl_->digestTSIGVariables(hmac, TSIGRecord::getClass().getCode(),
                               TSIGRecord::TSIG_TTL, time_signed,
                               DEFAULT_FUDGE, error.getCode(),
                               otherlen, otherdata,
                               impl_->state_ == SENT_RESPONSE);

    // Get the final digest, update internal state, then finish.
    vector<uint8_t> digest = hmac->sign(impl_->digest_len_);
    isc_throw_assert(digest.size() <= 0xffff); // cryptolink API should have ensured it.
    ConstTSIGRecordPtr tsig(new TSIGRecord(
                                impl_->key_.getKeyName(),
                                any::TSIG(impl_->key_.getAlgorithmName(),
                                          time_signed, DEFAULT_FUDGE,
                                          digest.size(), &digest[0],
                                          qid, error.getCode(), otherlen,
                                          otherdata)));
    // Exception free from now on.
    impl_->previous_digest_.swap(digest);
    impl_->state_ = (impl_->state_ == INIT) ? SENT_REQUEST : SENT_RESPONSE;
    return (tsig);
}

TSIGError
TSIGContext::verify(const TSIGRecord* const record, const void* const data,
                    const size_t data_len) {
    if (impl_->state_ == SENT_RESPONSE) {
        isc_throw(TSIGContextError,
                  "TSIG verify attempt after sending a response");
    }

    if (!record) {
        if (impl_->last_sig_dist_ >= 0 && impl_->last_sig_dist_ < 99) {
            // It is not signed, but in the middle of TCP stream. We just
            // update the HMAC state and consider this message OK.
            update(data, data_len);
            // This one is not signed, the last signed is one message further
            // now.
            impl_->last_sig_dist_++;
            // No digest to return now. Just say it's OK.
            return (impl_->postVerifyUpdate(TSIGError::NOERROR(), 0, 0));
        }
        // This case happens when we sent a signed request and have received an
        // unsigned response.  According to RFC2845 Section 4.6 this case should be
        // considered a "format error" (although the specific error code
        // wouldn't matter much for the caller).
        return (impl_->postVerifyUpdate(TSIGError::FORMERR(), 0, 0));
    }

    const any::TSIG& tsig_rdata = record->getRdata();

    // Reject some obviously invalid data
    if (data_len < MESSAGE_HEADER_LEN + record->getLength()) {
        isc_throw(InvalidParameter,
                  "TSIG verify: data length is invalid: " << data_len);
    }
    if (!data) {
        isc_throw(InvalidParameter, "TSIG verify: empty data is invalid");
    }

    // This message is signed and we won't throw any more.
    impl_->last_sig_dist_ = 0;

    // Check key: whether we first verify it with a known key or we verify
    // it using the consistent key in the context.  If the check fails we are
    // done with BADKEY.
    if (impl_->state_ == INIT && impl_->error_ == TSIGError::BAD_KEY()) {
        return (impl_->postVerifyUpdate(TSIGError::BAD_KEY(), 0, 0));
    }
    if (impl_->key_.getKeyName() != record->getName() ||
        impl_->key_.getAlgorithmName() != tsig_rdata.getAlgorithm()) {
        return (impl_->postVerifyUpdate(TSIGError::BAD_KEY(), 0, 0));
    }

    // Check time: the current time must be in the range of
    // [time signed - fudge, time signed + fudge].  Otherwise verification
    // fails with BADTIME. (RFC2845 Section 4.6.2)
    // Note: for simplicity we don't explicitly catch the case of too small
    // current time causing underflow.  With the fact that fudge is quite
    // small and (for now) non configurable, it shouldn't be a real concern
    // in practice.
    const uint64_t now = getTSIGTime();
    if (tsig_rdata.getTimeSigned() + DEFAULT_FUDGE < now ||
        tsig_rdata.getTimeSigned() - DEFAULT_FUDGE > now) {
        const void* digest = 0;
        size_t digest_len = 0;
        if (impl_->state_ == INIT) {
            digest = tsig_rdata.getMAC();
            digest_len = tsig_rdata.getMACSize();
            impl_->previous_timesigned_ = tsig_rdata.getTimeSigned();
        }
        return (impl_->postVerifyUpdate(TSIGError::BAD_TIME(), digest,
                                        digest_len));
    }

    // Handling empty MAC.  While RFC2845 doesn't explicitly prohibit other
    // cases, it can only reasonably happen in a response with BADSIG or
    // BADKEY.  We reject other cases as if it were BADSIG to avoid unexpected
    // acceptance of a bogus signature.  This behavior follows the BIND 9
    // implementation.
    if (tsig_rdata.getMACSize() == 0) {
        TSIGError error = TSIGError(tsig_rdata.getError());
        if (error != TSIGError::BAD_SIG() && error != TSIGError::BAD_KEY()) {
            error = TSIGError::BAD_SIG();
        }
        return (impl_->postVerifyUpdate(error, 0, 0));
    }

    HMACPtr hmac(impl_->createHMAC());

    // If the context has previous MAC (either the Request MAC or its own
    // previous MAC), digest it.
    if (impl_->state_ != INIT) {
        impl_->digestPreviousMAC(hmac);
    }

    // Signature length check based on RFC 4635 3.1
    if (tsig_rdata.getMACSize() > hmac->getOutputLength()) {
        // signature length too big
        return (impl_->postVerifyUpdate(TSIGError::FORMERR(), 0, 0));
    }
    if ((tsig_rdata.getMACSize() < 10) ||
        (tsig_rdata.getMACSize() < (hmac->getOutputLength() / 2))) {
        // signature length below minimum
        return (impl_->postVerifyUpdate(TSIGError::FORMERR(), 0, 0));
    }
    if (tsig_rdata.getMACSize() < impl_->digest_len_) {
        // (truncated) signature length too small
        return (impl_->postVerifyUpdate(TSIGError::BAD_TRUNC(), 0, 0));
    }

    //
    // Digest DNS message (excluding the trailing TSIG RR and adjusting the
    // QID and ARCOUNT header fields)
    //
    impl_->digestDNSMessage(hmac, tsig_rdata.getOriginalID(),
                            data, data_len - record->getLength());

    // Digest TSIG variables.  If state_ is VERIFIED_RESPONSE, it's a
    // continuation of the same TCP stream and skip digesting them except
    // for time related variables (RFC2845 4.4).
    // Note: we use the constant values for RR class and TTL specified
    // in RFC2845, not received values (we reject other values in constructing
    // the TSIGRecord).
    impl_->digestTSIGVariables(hmac, TSIGRecord::getClass().getCode(),
                               TSIGRecord::TSIG_TTL,
                               tsig_rdata.getTimeSigned(),
                               tsig_rdata.getFudge(), tsig_rdata.getError(),
                               tsig_rdata.getOtherLen(),
                               tsig_rdata.getOtherData(),
                               impl_->state_ == VERIFIED_RESPONSE);

    // Verify the digest with the received signature.
    if (hmac->verify(tsig_rdata.getMAC(), tsig_rdata.getMACSize())) {
        return (impl_->postVerifyUpdate(TSIGError::NOERROR(),
                                        tsig_rdata.getMAC(),
                                        tsig_rdata.getMACSize()));
    }

    return (impl_->postVerifyUpdate(TSIGError::BAD_SIG(), 0, 0));
}

bool
TSIGContext::lastHadSignature() const {
    if (impl_->last_sig_dist_ == -1) {
        isc_throw(TSIGContextError, "No message was verified yet");
    }
    return (impl_->last_sig_dist_ == 0);
}

void
TSIGContext::update(const void* const data, size_t len) {
    HMACPtr hmac(impl_->createHMAC());
    // Use the previous digest and never use it again
    impl_->digestPreviousMAC(hmac);
    impl_->previous_digest_.clear();
    // Push the message there
    hmac->update(data, len);
    impl_->hmac_ = hmac;
}

} // namespace dns
} // namespace isc