1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677 | // Copyright (C) 2013-2023 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <asiolink/io_address.h>
#include <dhcp/dhcp6.h>
#include <dhcp/hwaddr.h>
#include <dhcp/libdhcp++.h>
#include <dhcp/protocol_util.h>
#include <util/buffer.h>
#include <gtest/gtest.h><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
// in_systm.h is required on some some BSD systems
// complaining that n_time is undefined but used
// in ip.h.
#include <netinet/in_systm.h><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <netinet/ip.h><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
using namespace isc;
using namespace isc::asiolink;
using namespace isc::dhcp;
using namespace isc::util;
namespace {
/*/// @brief OptionCustomTest test class.
class OptionCustomTest : public ::testing::Test {
public:
};*/
/// The purpose of this test is to verify that the IP header checksum
/// is calculated correctly.
TEST(ProtocolUtilTest, checksum) {
// IPv4 header to be used to calculate checksum.
const uint8_t hdr[] = {
0x45, // IP version and header length
0x00, // TOS
0x00, 0x3c, // Total length of the IP packet.
0x1c, 0x46, // Identification field.
0x40, 0x00, // Fragmentation.
0x40, // TTL
0x06, // Protocol
0x00, 0x00, // Checksum (reset to 0x00).
0xac, 0x10, 0x0a, 0x63, // Source IP address.
0xac, 0x10, 0x0a, 0x0c // Destination IP address.
};
// Calculate size of the header array.
const uint32_t hdr_size = sizeof(hdr) / sizeof(hdr[0]);
// Get the actual checksum.
uint16_t chksum = ~calcChecksum(hdr, hdr_size);
// The 0xb1e6 value has been calculated by other means.
EXPECT_EQ(0xb1e6, chksum);
// Tested function may also take the initial value of the sum.
// Let's set it to 2 and see whether it is included in the
// calculation.
chksum = ~calcChecksum(hdr, hdr_size, 2);
// The checksum value should change.
EXPECT_EQ(0xb1e4, chksum);
}
// The purpose of this test is to verify that the Ethernet frame header
// can be decoded correctly. In particular it verifies that the source
// HW address can be extracted from it.
TEST(ProtocolUtilTest, decodeEthernetHeader) {
// Source HW address, 6 bytes.
const uint8_t src_hw_addr[6] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
// Destination HW address, 6 bytes.
const uint8_t dest_hw_addr[6] = {
0x20, 0x31, 0x42, 0x53, 0x64, 0x75
};
// Prepare a buffer holding Ethernet frame header and 4 bytes of
// dummy data.
OutputBuffer buf(1);
buf.writeData(dest_hw_addr, sizeof(dest_hw_addr));
buf.writeData(src_hw_addr, sizeof(src_hw_addr));
buf.writeUint16(ETHERNET_TYPE_IP);
// Append dummy data. We will later check that this data is not
// removed or corrupted when reading the ethernet header.
buf.writeUint32(0x01020304);
// Create a buffer with truncated ethernet frame header..
InputBuffer in_buf_truncated(buf.getData(), buf.getLength() - 6);
// But provide valid packet object to make sure that the function
// under test does not throw due to NULL pointer packet.
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 0));
// Function should throw because header data is truncated.
EXPECT_THROW(decodeEthernetHeader(in_buf_truncated, pkt),
InvalidPacketHeader);
// Get not truncated buffer.
InputBuffer in_buf(buf.getData(), buf.getLength());
// But provide NULL packet object instead.
pkt.reset();
// It should throw again but a different exception.
EXPECT_THROW(decodeEthernetHeader(in_buf, pkt),
BadValue);
// Now provide, correct data.
pkt.reset(new Pkt4(DHCPDISCOVER, 0));
// It should not throw now.
ASSERT_NO_THROW(decodeEthernetHeader(in_buf, pkt));
// Verify that the destination HW address has been initialized...
HWAddrPtr checked_dest_hwaddr = pkt->getLocalHWAddr();
ASSERT_TRUE(checked_dest_hwaddr);
// and is correct.
EXPECT_EQ(HWTYPE_ETHERNET, checked_dest_hwaddr->htype_);
ASSERT_EQ(sizeof(dest_hw_addr), checked_dest_hwaddr->hwaddr_.size());
EXPECT_TRUE(std::equal(dest_hw_addr, dest_hw_addr + sizeof(dest_hw_addr),
checked_dest_hwaddr->hwaddr_.begin()));
// Verify that the HW address of the source has been initialized.
HWAddrPtr checked_src_hwaddr = pkt->getRemoteHWAddr();
ASSERT_TRUE(checked_src_hwaddr);
// And that it is correct.
EXPECT_EQ(HWTYPE_ETHERNET, checked_src_hwaddr->htype_);
ASSERT_EQ(sizeof(src_hw_addr), checked_src_hwaddr->hwaddr_.size());
EXPECT_TRUE(std::equal(src_hw_addr, src_hw_addr + sizeof(src_hw_addr),
checked_src_hwaddr->hwaddr_.begin()));
// The entire ethernet packet header should have been read. This means
// that the internal buffer pointer should now point to its tail.
ASSERT_EQ(ETHERNET_HEADER_LEN, in_buf.getPosition());
// And the dummy data should be still readable and correct.
uint32_t dummy_data = in_buf.readUint32();
EXPECT_EQ(0x01020304, dummy_data);
}
/// The purpose of this test is to verify that the IP and UDP header
/// is decoded correctly and appropriate values of IP addresses and
/// ports are assigned to a Pkt4 object.
TEST(ProtocolUtilTest, decodeIpUdpHeader) {
// IPv4 header to be parsed.
const uint8_t hdr[] = {
0x45, // IP version and header length
0x00, // TOS
0x00, 0x3c, // Total length of the IP packet.
0x1c, 0x46, // Identification field.
0x40, 0x00, // Fragmentation.
0x40, // TTL
IPPROTO_UDP, // Protocol
0x00, 0x00, // Checksum (reset to 0x00).
0xc0, 0x00, 0x02, 0x63, // Source IP address.
0xc0, 0x00, 0x02, 0x0c, // Destination IP address.
0x27, 0x54, // Source port
0x27, 0x53, // Destination port
0x00, 0x08, // UDP length
0x00, 0x00 // Checksum
};
// Write header data to the buffer.
OutputBuffer buf(1);
buf.writeData(hdr, sizeof(hdr));
// Append some dummy data.
buf.writeUint32(0x01020304);
// Create an input buffer holding truncated headers.
InputBuffer in_buf_truncated(buf.getData(), buf.getLength() - 10);
// Create non NULL Pkt4 object to make sure that the function under
// test does not throw due to invalid Pkt4 object.
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 0));
// Function should throw because buffer holds truncated data.
EXPECT_THROW(decodeIpUdpHeader(in_buf_truncated, pkt), InvalidPacketHeader);
// Create a valid input buffer (not truncated).
InputBuffer in_buf(buf.getData(), buf.getLength());
// Set NULL Pkt4 object to verify that function under test will
// return exception as expected.
pkt.reset();
// And check whether it throws exception.
EXPECT_THROW(decodeIpUdpHeader(in_buf, pkt), BadValue);
// Now, let's provide valid arguments and make sure it doesn't throw.
pkt.reset(new Pkt4(DHCPDISCOVER, 0));
ASSERT_TRUE(pkt);
EXPECT_NO_THROW(decodeIpUdpHeader(in_buf, pkt));
// Verify the source address and port.
EXPECT_EQ("192.0.2.99", pkt->getRemoteAddr().toText());
EXPECT_EQ(10068, pkt->getRemotePort());
// Verify the destination address and port.
EXPECT_EQ("192.0.2.12", pkt->getLocalAddr().toText());
EXPECT_EQ(10067, pkt->getLocalPort());
// Verify that the dummy data has not been corrupted and that the
// internal read pointer has been moved to the tail of the UDP
// header.
ASSERT_EQ(MIN_IP_HEADER_LEN + UDP_HEADER_LEN, in_buf.getPosition());
EXPECT_EQ(0x01020304, in_buf.readUint32());
}
/// The purpose of this test is to verify that the ethernet
/// header is correctly constructed from the destination and
/// hardware addresses.
TEST(ProtocolUtilTest, writeEthernetHeader) {
// Source HW address, 6 bytes.
const uint8_t src_hw_addr[6] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
// Destination HW address, 6 bytes.
const uint8_t dest_hw_addr[6] = {
0x20, 0x31, 0x42, 0x53, 0x64, 0x75
};
// Create output buffer.
OutputBuffer buf(1);
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 0));
HWAddrPtr local_hw_addr(new HWAddr(src_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setLocalHWAddr(local_hw_addr));
// Set invalid length (7) of the hw address. Fill it with
// values of 1.
std::vector<uint8_t> invalid_length_addr(7, 1);
HWAddrPtr remote_hw_addr(new HWAddr(invalid_length_addr, 1));
ASSERT_NO_THROW(pkt->setRemoteHWAddr(remote_hw_addr));
// HW address is too long, so it should fail.
EXPECT_THROW(writeEthernetHeader(pkt, buf), BadValue);
// Finally, set a valid HW address.
remote_hw_addr.reset(new HWAddr(dest_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setRemoteHWAddr(remote_hw_addr));
// Construct the ethernet header using HW addresses stored
// in the pkt object.
writeEthernetHeader(pkt, buf);
// The resulting ethernet header consists of destination
// and src HW address (each 6 bytes long) and two bytes
// of encapsulated protocol type.
ASSERT_EQ(14, buf.getLength());
// Verify that first 6 bytes comprise valid destination
// HW address. Instead of using memory comparison functions
// we check bytes one-by-one. In case of mismatch we will
// get exact values that are mismatched. If memcmp was used
// the error message would not indicate the values of
// mismatched bytes.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(dest_hw_addr[i], buf[i]);
}
// Verify that following 6 bytes comprise the valid source
// HW address.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(src_hw_addr[i], buf[i + 6]);
}
// The last two bytes comprise the encapsulated protocol type.
// We expect IPv4 protocol type which is specified by 0x0800.
EXPECT_EQ(0x08, buf[12]);
EXPECT_EQ(0x0, buf[13]);
}
/// The purpose of this test is to verify that the ethernet
/// header is correctly constructed from the destination and
/// hardware addresses with the broadcast flag set.
TEST(ProtocolUtilTest, writeEthernetHeaderBroadcast) {
// Source HW address, 6 bytes.
const uint8_t src_hw_addr[6] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
// Destination HW address, 6 bytes.
const uint8_t dest_hw_addr[6] = {
0x20, 0x31, 0x42, 0x53, 0x64, 0x75
};
// Create output buffer.
OutputBuffer buf(1);
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 0));
HWAddrPtr local_hw_addr(new HWAddr(src_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setLocalHWAddr(local_hw_addr));
HWAddrPtr remote_hw_addr(new HWAddr(dest_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setRemoteHWAddr(remote_hw_addr));
// Set the broadcast flags.
pkt->setFlags(pkt->getFlags() | Pkt4::FLAG_BROADCAST_MASK);
// Construct the ethernet header using HW addresses stored
// in the pkt object.
writeEthernetHeader(pkt, buf);
// The resulting ethernet header consists of destination
// and src HW address (each 6 bytes long) and two bytes
// of encapsulated protocol type.
ASSERT_EQ(14, buf.getLength());
// Verify that first 6 bytes comprise broadcast destination
// HW address.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(255, buf[i]);
}
// Verify that following 6 bytes comprise the valid source
// HW address.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(src_hw_addr[i], buf[i + 6]);
}
// The last two bytes comprise the encapsulated protocol type.
// We expect IPv4 protocol type which is specified by 0x0800.
EXPECT_EQ(0x08, buf[12]);
EXPECT_EQ(0x0, buf[13]);
}
/// The purpose of this test is to verify that the ethernet
/// header is correctly constructed from the destination and
/// hardware addresses with the broadcast flag set but the packet
/// was relayed.
TEST(ProtocolUtilTest, writeEthernetHeaderBroadcastRelayed) {
// Source HW address, 6 bytes.
const uint8_t src_hw_addr[6] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
// Destination HW address, 6 bytes.
const uint8_t dest_hw_addr[6] = {
0x20, 0x31, 0x42, 0x53, 0x64, 0x75
};
// Create output buffer.
OutputBuffer buf(1);
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 0));
HWAddrPtr local_hw_addr(new HWAddr(src_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setLocalHWAddr(local_hw_addr));
HWAddrPtr remote_hw_addr(new HWAddr(dest_hw_addr, 6, 1));
ASSERT_NO_THROW(pkt->setRemoteHWAddr(remote_hw_addr));
// Set the broadcast flags.
pkt->setFlags(pkt->getFlags() | Pkt4::FLAG_BROADCAST_MASK);
// Set a gateway address: the broadcast flag is now for
// the relay, no longer for the server.
pkt->setGiaddr(IOAddress("192.0.2.4"));
// Construct the ethernet header using HW addresses stored
// in the pkt object.
writeEthernetHeader(pkt, buf);
// The resulting ethernet header consists of destination
// and src HW address (each 6 bytes long) and two bytes
// of encapsulated protocol type.
ASSERT_EQ(14, buf.getLength());
// Verify that first 6 bytes comprise valid destination
// HW address. Instead of using memory comparison functions
// we check bytes one-by-one. In case of mismatch we will
// get exact values that are mismatched. If memcmp was used
// the error message would not indicate the values of
// mismatched bytes.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(dest_hw_addr[i], buf[i]);
}
// Verify that following 6 bytes comprise the valid source
// HW address.
for (unsigned i = 0; i < 6; ++i) {
EXPECT_EQ(src_hw_addr[i], buf[i + 6]);
}
// The last two bytes comprise the encapsulated protocol type.
// We expect IPv4 protocol type which is specified by 0x0800.
EXPECT_EQ(0x08, buf[12]);
EXPECT_EQ(0x0, buf[13]);
}
TEST(ProtocolUtilTest, writeIpUdpHeader) {
// Create DHCPv4 packet. Some values held by this object are
// used by the utility function under test to figure out the
// contents of the IP and UDP headers, e.g. source and
// destination IP address or port number.
Pkt4Ptr pkt(new Pkt4(DHCPOFFER, 0));
ASSERT_TRUE(pkt);
// Set local and remote address and port.
pkt->setLocalAddr(IOAddress("192.0.2.1"));
pkt->setRemoteAddr(IOAddress("192.0.2.111"));
pkt->setLocalPort(DHCP4_SERVER_PORT);
pkt->setRemotePort(DHCP4_CLIENT_PORT);
// Pack the contents of the packet.
ASSERT_NO_THROW(pkt->pack());
// Create output buffer. The headers will be written to it.
OutputBuffer buf(1);
// Write some dummy data to the buffer. We will check that the
// function under test appends to this data, not overrides it.
buf.writeUint16(0x0102);
// Write both IP and UDP headers.
writeIpUdpHeader(pkt, buf);
// The resulting size of the buffer must be 30. The 28 bytes are
// consumed by the IP and UDP headers. The other 2 bytes are dummy
// data at the beginning of the buffer.
ASSERT_EQ(30, buf.getLength());
// Make sure that the existing data in the buffer was not corrupted
// by the function under test.
EXPECT_EQ(0x01, buf[0]);
EXPECT_EQ(0x02, buf[1]);
// Copy the contents of the buffer to InputBuffer object. This object
// exposes convenient functions for reading.
InputBuffer in_buf(buf.getData(), buf.getLength());
// Check dummy data.
uint16_t dummy_data = in_buf.readUint16();
EXPECT_EQ(0x0102, dummy_data);
// The IP version and IHL are stored in the same octet (4 bits each).
uint8_t ver_len = in_buf.readUint8();
// The most significant bits define IP version.
uint8_t ip_ver = ver_len >> 4;
EXPECT_EQ(4, ip_ver);
// The least significant bits define header length (in 32-bits chunks).
uint8_t ip_len = ver_len & 0x0F;
EXPECT_EQ(5, ip_len);
// Get Differentiated Services Codepoint and Explicit Congestion
// Notification field.
uint8_t dscp_ecn = in_buf.readUint8();
EXPECT_EQ(IPTOS_LOWDELAY, dscp_ecn);
// Total length of IP packet. Includes UDP header and payload.
uint16_t total_len = in_buf.readUint16();
EXPECT_EQ(28 + pkt->getBuffer().getLength(), total_len);
// Identification field.
uint16_t ident = in_buf.readUint16();
EXPECT_EQ(0, ident);
// Fragmentation.
uint16_t fragment = in_buf.readUint16();
// Setting second most significant bit means no fragmentation.
EXPECT_EQ(0x4000, fragment);
// Get TTL
uint8_t ttl = in_buf.readUint8();
// Expect non-zero TTL.
EXPECT_GE(ttl, 1);
// Protocol type is UDP.
uint8_t proto = in_buf.readUint8();
EXPECT_EQ(static_cast<short>(IPPROTO_UDP), proto);
// Check that the checksum is correct. The reference checksum value
// has been calculated manually.
uint16_t ip_checksum = in_buf.readUint16();
EXPECT_EQ(0x755c, ip_checksum);
// Validate source address.
// Initializing it to IPv6 address guarantees that it is not initialized
// to the value that we expect to be read from a header since the value
// read from a header will be IPv4.
IOAddress src_addr("::1");
// Read src address as an array of bytes because it is easily convertible
// to IOAddress object.
uint8_t src_addr_data[4];
ASSERT_NO_THROW(<--- There is an unknown macro here somewhere. Configuration is required. If ASSERT_NO_THROW is a macro then please configure it.
in_buf.readData(src_addr_data, 4);
src_addr = IOAddress::fromBytes(AF_INET, src_addr_data);
);
EXPECT_EQ(IOAddress("192.0.2.1"), src_addr);
// Validate destination address.
IOAddress dest_addr("::1");
uint8_t dest_addr_data[4];
ASSERT_NO_THROW(
in_buf.readData(dest_addr_data, 4);
dest_addr = IOAddress::fromBytes(AF_INET, dest_addr_data);
);
EXPECT_EQ(IOAddress("192.0.2.111"), dest_addr);
// UDP header starts here.
// Check source port.
uint16_t src_port = in_buf.readUint16();
EXPECT_EQ(pkt->getLocalPort(), src_port);
// Check destination port.
uint16_t dest_port = in_buf.readUint16();
EXPECT_EQ(pkt->getRemotePort(), dest_port);
// UDP header and data length.
uint16_t udp_len = in_buf.readUint16();
EXPECT_EQ(8 + pkt->getBuffer().getLength(), udp_len);
// Verify UDP checksum. The reference checksum has been calculated manually.
uint16_t udp_checksum = in_buf.readUint16();
EXPECT_EQ(0x8817, udp_checksum);
}
/// Test that checks the RAII implementation of ScopedEnableOptionsCopy works
/// as expected, restoring the copy retrieve options flag.
TEST(ScopedEnableOptionsCopy, enableOptionsCopy) {
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 2543));
OptionPtr option = Option::create(Option::V4, DHO_BOOT_FILE_NAME);
pkt->addOption(option);
ASSERT_FALSE(pkt->isCopyRetrievedOptions());
ASSERT_EQ(option, pkt->getOption(DHO_BOOT_FILE_NAME));
{
ScopedEnableOptionsCopy<Pkt4> oc(pkt);
ASSERT_TRUE(pkt->isCopyRetrievedOptions());
OptionPtr option_copy = pkt->getOption(DHO_BOOT_FILE_NAME);
ASSERT_NE(option, option_copy);
option = option_copy;
}
ASSERT_FALSE(pkt->isCopyRetrievedOptions());
ASSERT_EQ(option, pkt->getOption(DHO_BOOT_FILE_NAME));
{
try {
ScopedEnableOptionsCopy<Pkt4> oc(pkt);
ASSERT_TRUE(pkt->isCopyRetrievedOptions());
OptionPtr option_copy = pkt->getOption(DHO_BOOT_FILE_NAME);
ASSERT_NE(option, option_copy);
option = option_copy;
throw 0;
} catch (...) {
ASSERT_FALSE(pkt->isCopyRetrievedOptions());
ASSERT_EQ(option, pkt->getOption(DHO_BOOT_FILE_NAME));
}
ASSERT_FALSE(pkt->isCopyRetrievedOptions());
ASSERT_EQ(option, pkt->getOption(DHO_BOOT_FILE_NAME));
}
}
/// Test that checks the RAII implementation of ScopedPkt4OptionsCopy works
/// as expected, restoring the initial Pkt4 options.
TEST(ScopedOptionsCopy, pkt4OptionsCopy) {
Pkt4Ptr pkt(new Pkt4(DHCPDISCOVER, 2543));
OptionPtr option = Option::create(Option::V4, DHO_BOOT_FILE_NAME);
pkt->addOption(option);
OptionCollection options = pkt->options_;
size_t count = options.size();
ASSERT_NE(0, count);
ASSERT_EQ(option, pkt->getOption(DHO_BOOT_FILE_NAME));
std::string expected = pkt->toText();
pkt->pack();
OutputBuffer buf = pkt->getBuffer();
{
ScopedPkt4OptionsCopy oc(*pkt);
ASSERT_NE(pkt->options_, options);
ASSERT_NE(option, pkt->getOption(DHO_BOOT_FILE_NAME));
pkt->pack();
ASSERT_EQ(buf.getLength(), pkt->getBuffer().getLength());
for (size_t index = 0; index < buf.getLength(); ++index) {
ASSERT_EQ(buf[index], pkt->getBuffer()[index]);
}
ASSERT_EQ(expected, pkt->toText());
pkt->delOption(DHO_BOOT_FILE_NAME);
ASSERT_EQ(pkt->options_.size(), count - 1);
ASSERT_FALSE(pkt->getOption(DHO_BOOT_FILE_NAME));
}
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(DHO_BOOT_FILE_NAME), option);
{
try {
ScopedPkt4OptionsCopy oc(*pkt);
ASSERT_NE(pkt->options_, options);
ASSERT_NE(option, pkt->getOption(DHO_BOOT_FILE_NAME));
pkt->pack();
ASSERT_EQ(buf.getLength(), pkt->getBuffer().getLength());
for (size_t index = 0; index < buf.getLength(); ++index) {
ASSERT_EQ(buf[index], pkt->getBuffer()[index]);
}
ASSERT_EQ(expected, pkt->toText());
pkt->delOption(DHO_BOOT_FILE_NAME);
ASSERT_EQ(pkt->options_.size(), count - 1);
ASSERT_FALSE(pkt->getOption(DHO_BOOT_FILE_NAME));
throw 0;
} catch (...) {
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(DHO_BOOT_FILE_NAME), option);
}
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(DHO_BOOT_FILE_NAME), option);
}
}
/// Test that checks the RAII implementation of ScopedPkt6OptionsCopy works
/// as expected, restoring the initial Pkt6 options.
TEST(ScopedOptionsCopy, pkt6OptionsCopy) {
Pkt6Ptr pkt(new Pkt6(DHCPV6_SOLICIT, 2543));
OptionPtr option = Option::create(Option::V6, D6O_BOOTFILE_URL);
pkt->addOption(option);
OptionCollection options = pkt->options_;
size_t count = options.size();
ASSERT_NE(0, count);
ASSERT_EQ(option, pkt->getOption(D6O_BOOTFILE_URL));
std::string expected = pkt->toText();
pkt->pack();
OutputBuffer buf = pkt->getBuffer();
{
ScopedPkt6OptionsCopy oc(*pkt);
ASSERT_NE(pkt->options_, options);
ASSERT_NE(option, pkt->getOption(D6O_BOOTFILE_URL));
pkt->pack();
ASSERT_EQ(buf.getLength(), pkt->getBuffer().getLength());
for (size_t index = 0; index < buf.getLength(); ++index) {
ASSERT_EQ(buf[index], pkt->getBuffer()[index]);
}
ASSERT_EQ(expected, pkt->toText());
pkt->delOption(D6O_BOOTFILE_URL);
ASSERT_EQ(pkt->options_.size(), count - 1);
ASSERT_FALSE(pkt->getOption(D6O_BOOTFILE_URL));
}
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(D6O_BOOTFILE_URL), option);
{
try {
ScopedPkt6OptionsCopy oc(*pkt);
ASSERT_NE(pkt->options_, options);
ASSERT_NE(option, pkt->getOption(D6O_BOOTFILE_URL));
pkt->pack();
ASSERT_EQ(buf.getLength(), pkt->getBuffer().getLength());
for (size_t index = 0; index < buf.getLength(); ++index) {
ASSERT_EQ(buf[index], pkt->getBuffer()[index]);
}
ASSERT_EQ(expected, pkt->toText());
pkt->delOption(D6O_BOOTFILE_URL);
ASSERT_EQ(pkt->options_.size(), count - 1);
ASSERT_FALSE(pkt->getOption(D6O_BOOTFILE_URL));
throw 0;
} catch (...) {
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(D6O_BOOTFILE_URL), option);
}
ASSERT_EQ(pkt->options_, options);
ASSERT_EQ(pkt->getOption(D6O_BOOTFILE_URL), option);
}
}
/// Test that checks the RAII implementation of ScopedSubOptionsCopy works
/// as expected, restoring the initial option suboptions.
TEST(ScopedOptionsCopy, subOptionsCopy) {
OptionPtr initial = Option::create(Option::V4, 231);
OptionPtr option = Option::create(Option::V4, DHO_BOOT_FILE_NAME);
initial->addOption(option);
OptionCollection options = initial->getOptions();
size_t count = options.size();
ASSERT_NE(0, count);
ASSERT_EQ(option, initial->getOption(DHO_BOOT_FILE_NAME));
{
ScopedSubOptionsCopy oc(initial);
ASSERT_EQ(initial->getOptions(), options);
ASSERT_EQ(option, initial->getOption(DHO_BOOT_FILE_NAME));
initial->delOption(DHO_BOOT_FILE_NAME);
ASSERT_EQ(initial->getOptions().size(), count - 1);
ASSERT_FALSE(initial->getOption(DHO_BOOT_FILE_NAME));
}
ASSERT_EQ(initial->getOptions(), options);
ASSERT_EQ(initial->getOption(DHO_BOOT_FILE_NAME), option);
{
try {
ScopedSubOptionsCopy oc(initial);
ASSERT_EQ(initial->getOptions(), options);
ASSERT_EQ(option, initial->getOption(DHO_BOOT_FILE_NAME));
initial->delOption(DHO_BOOT_FILE_NAME);
ASSERT_EQ(initial->getOptions().size(), count - 1);
ASSERT_FALSE(initial->getOption(DHO_BOOT_FILE_NAME));
throw 0;
} catch (...) {
ASSERT_EQ(initial->getOptions(), options);
ASSERT_EQ(initial->getOption(DHO_BOOT_FILE_NAME), option);
}
ASSERT_EQ(initial->getOptions(), options);
ASSERT_EQ(initial->getOption(DHO_BOOT_FILE_NAME), option);
}
}
} // anonymous namespace
|