1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624 | // Copyright (C) 2014-2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <dhcp/dhcp4.h>
#include <dhcp/iface_mgr.h>
#include <dhcp/pkt4.h>
#include <dhcp/pkt_filter_bpf.h>
#include <dhcp/protocol_util.h>
#include <exceptions/exceptions.h>
#include <algorithm><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <net/bpf.h><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <netinet/if_ether.h><--- Include file: not found. Please note: Cppcheck does not need standard library headers to get proper results.
namespace {
using namespace isc::dhcp;
using namespace boost::posix_time;
/// @brief Maximum number of attempts to open BPF device.
const unsigned int MAX_BPF_OPEN_ATTEMPTS = 100;
/// @brief Length of the header containing the address family for the packet
/// received on local loopback interface.
const unsigned int BPF_LOCAL_LOOPBACK_HEADER_LEN = 4;
/// The following structure defines a Berkeley Packet Filter program to perform
/// packet filtering. The program operates on Ethernet packets. To help with
/// interpretation of the program, for the types of Ethernet packets we are
/// interested in, the header layout is:
///
/// 6 bytes Destination Ethernet Address
/// 6 bytes Source Ethernet Address
/// 2 bytes Ethernet packet type
///
/// 20 bytes Fixed part of IP header
/// variable Variable part of IP header
///
/// 2 bytes UDP Source port
/// 2 bytes UDP destination port
/// 4 bytes Rest of UDP header
///
/// Each instruction is preceded with the comment giving the instruction
/// number within a BPF program, in the following format: #123.
///
/// @todo We may want to extend the filter to receive packets sent
/// to the particular IP address assigned to the interface or
/// broadcast address.
struct bpf_insn ethernet_ip_udp_filter [] = {
// Make sure this is an IP packet: check the half-word (two bytes)
// at offset 12 in the packet (the Ethernet packet type). If it
// is, advance to the next instruction. If not, advance 11
// instructions (which takes execution to the last instruction in
// the sequence: "drop it").
// #0
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, ETHERNET_PACKET_TYPE_OFFSET),
// #1
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, ETHERTYPE_IP, 0, 11),
// Make sure it's a UDP packet. The IP protocol is at offset
// 9 in the IP header so, adding the Ethernet packet header size
// of 14 bytes gives an absolute byte offset in the packet of 23.
// #2
BPF_STMT(BPF_LD + BPF_B + BPF_ABS,
ETHERNET_HEADER_LEN + IP_PROTO_TYPE_OFFSET),
// #3
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_UDP, 0, 9),
// Make sure this isn't a fragment by checking that the fragment
// offset field in the IP header is zero. This field is the
// least-significant 13 bits in the bytes at offsets 6 and 7 in
// the IP header, so the half-word at offset 20 (6 + size of
// Ethernet header) is loaded and an appropriate mask applied.
// #4
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, ETHERNET_HEADER_LEN + IP_FLAGS_OFFSET),
// #5
BPF_JUMP(BPF_JMP + BPF_JSET + BPF_K, 0x1fff, 7, 0),
// Check the packet's destination address. The program will only
// allow the packets sent to the broadcast address or unicast
// to the specific address on the interface. By default, this
// address is set to 0 and must be set to the specific value
// when the raw socket is created and the program is attached
// to it. The caller must assign the address to the
// prog.bf_insns[8].k in the network byte order.
// #6
BPF_STMT(BPF_LD + BPF_W + BPF_ABS,
ETHERNET_HEADER_LEN + IP_DEST_ADDR_OFFSET),
// If this is a broadcast address, skip the next check.
// #7
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0xffffffff, 1, 0),
// If this is not broadcast address, compare it with the unicast
// address specified for the interface.
// #8
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0x00000000, 0, 4),
// Get the IP header length. This is achieved by the following
// (special) instruction that, given the offset of the start
// of the IP header (offset 14) loads the IP header length.
// #9
BPF_STMT(BPF_LDX + BPF_B + BPF_MSH, ETHERNET_HEADER_LEN),
// Make sure it's to the right port. The following instruction
// adds the previously extracted IP header length to the given
// offset to locate the correct byte. The given offset of 16
// comprises the length of the Ethernet header (14) plus the offset
// of the UDP destination port (2) within the UDP header.
// #10
BPF_STMT(BPF_LD + BPF_H + BPF_IND, ETHERNET_HEADER_LEN + UDP_DEST_PORT),
// The following instruction tests against the default DHCP server port,
// but the action port is actually set in PktFilterBPF::openSocket().
// N.B. The code in that method assumes that this instruction is at
// offset 11 in the program. If this is changed, openSocket() must be
// updated.
// #11
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, DHCP4_SERVER_PORT, 0, 1),
// If we passed all the tests, ask for the whole packet.
// #12
BPF_STMT(BPF_RET + BPF_K, (u_int)-1),
// Otherwise, drop it.
// #13
BPF_STMT(BPF_RET + BPF_K, 0),
};
/// The following structure defines a BPF program to perform packet filtering
/// on local loopback interface. The packets received on this interface do not
/// contain the regular link-layer header, but rather a 4-byte long pseudo
/// header containing the address family. The reminder of the packet contains
/// IP header, UDP header and a DHCP message.
///
/// Each instruction is preceded with the comment giving the instruction
/// number within a BPF program, in the following format: #123.
struct bpf_insn loopback_ip_udp_filter [] = {
// Make sure this is an IP packet. The pseudo header comprises a 4-byte
// long value identifying the address family, which should be set to
// AF_INET. The default value used here (0xFFFFFFFF) must be overridden
// with htonl(AF_INET) from within the openSocket function.
// #0
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 0),
// #1
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0xFFFFFFFF, 0, 11),
// Make sure it's a UDP packet. The IP protocol is at offset
// 9 in the IP header so, adding the pseudo header size 4 bytes
// gives an absolute byte offset in the packet of 13.
// #2
BPF_STMT(BPF_LD + BPF_B + BPF_ABS,
BPF_LOCAL_LOOPBACK_HEADER_LEN + IP_PROTO_TYPE_OFFSET),
// #3
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_UDP, 0, 9),
// Make sure this isn't a fragment by checking that the fragment
// offset field in the IP header is zero. This field is the
// least-significant 13 bits in the bytes at offsets 6 and 7 in
// the IP header, so the half-word at offset 10 (6 + size of
// pseudo header) is loaded and an appropriate mask applied.
// #4
BPF_STMT(BPF_LD + BPF_H + BPF_ABS,
BPF_LOCAL_LOOPBACK_HEADER_LEN + IP_FLAGS_OFFSET),
// #5
BPF_JUMP(BPF_JMP + BPF_JSET + BPF_K, 0x1fff, 7, 0),
// Check the packet's destination address. The program will only
// allow the packets sent to the broadcast address or unicast
// to the specific address on the interface. By default, this
// address is set to 0 and must be set to the specific value
// when the raw socket is created and the program is attached
// to it. The caller must assign the address to the
// prog.bf_insns[8].k in the network byte order.
// #6
BPF_STMT(BPF_LD + BPF_W + BPF_ABS,
BPF_LOCAL_LOOPBACK_HEADER_LEN + IP_DEST_ADDR_OFFSET),
// If this is a broadcast address, skip the next check.
// #7
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0xffffffff, 1, 0),
// If this is not broadcast address, compare it with the unicast
// address specified for the interface.
// #8
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0x00000000, 0, 4),
// Get the IP header length. This is achieved by the following
// (special) instruction that, given the offset of the start
// of the IP header (offset 4) loads the IP header length.
// #9
BPF_STMT(BPF_LDX + BPF_B + BPF_MSH, BPF_LOCAL_LOOPBACK_HEADER_LEN),
// Make sure it's to the right port. The following instruction
// adds the previously extracted IP header length to the given
// offset to locate the correct byte. The given offset of 6
// comprises the length of the pseudo header (4) plus the offset
// of the UDP destination port (2) within the UDP header.
// #10
BPF_STMT(BPF_LD + BPF_H + BPF_IND,
BPF_LOCAL_LOOPBACK_HEADER_LEN + UDP_DEST_PORT),
// The following instruction tests against the default DHCP server port,
// but the action port is actually set in PktFilterBPF::openSocket().
// N.B. The code in that method assumes that this instruction is at
// offset 11 in the program. If this is changed, openSocket() must be
// updated.
// #11
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, DHCP4_SERVER_PORT, 0, 1),
// If we passed all the tests, ask for the whole packet.
// #12
BPF_STMT(BPF_RET + BPF_K, (u_int)-1),
// Otherwise, drop it.
// #13
BPF_STMT(BPF_RET + BPF_K, 0),
};
}
using namespace isc::util;
namespace isc {
namespace dhcp {
SocketInfo
PktFilterBPF::openSocket(Iface& iface,
const isc::asiolink::IOAddress& addr,
const uint16_t port, const bool,
const bool) {
// Open fallback socket first. If it fails, it will give us an indication
// that there is another service (perhaps DHCP server) running.
// The function will throw an exception and effectively cease opening
// the BPF device below.
int fallback = openFallbackSocket(addr, port);
// Fallback has opened, so let's open the BPF device that we will be
// using for receiving and sending packets. The BPF device is opened
// by opening a file /dev/bpf%d where %d is a number. There may be
// devices already open so we will try them one by one and open the
// one that is not busy.
int sock = -1;
for (unsigned int bpf_dev = 0;
bpf_dev < MAX_BPF_OPEN_ATTEMPTS && (sock < 0);
++bpf_dev) {
std::ostringstream s;
s << "/dev/bpf" << bpf_dev;
sock = open(s.str().c_str(), O_RDWR, 0);
if (sock < 0) {
// If device is busy, try another one.
if (errno == EBUSY) {
continue;
}
// All other errors are fatal, so close the fallback socket
// and throw.
close(fallback);
isc_throw(SocketConfigError,
"Failed to open BPF device " << s.str());
}
}
// Set the close-on-exec flag.
if (fcntl(sock, F_SETFD, FD_CLOEXEC) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to set close-on-exec flag"
<< " on BPF device with interface " << iface.getName());
}
// The BPF device is now open. Now it needs to be configured.
// Associate the device with the interface name.
struct ifreq iface_data;
memset(&iface_data, 0, sizeof(iface_data));
std::strncpy(iface_data.ifr_name, iface.getName().c_str(),
std::min(static_cast<int>(IFNAMSIZ),
static_cast<int>(iface.getName().length())));
if (ioctl(sock, BIOCSETIF, &iface_data) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to associate BPF device "
" with interface " << iface.getName());
}
// Get the BPF version supported by the kernel. Every application
// must check this version against the current version in use.
struct bpf_version ver;
if (ioctl(sock, BIOCVERSION, &ver) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to obtain the BPF version"
" number from the kernel");
}
// Major BPF version must match and the minor version that the kernel
// runs must be at least the current version in use.
if ((ver.bv_major != BPF_MAJOR_VERSION) ||
(ver.bv_minor < BPF_MINOR_VERSION)) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Invalid BPF version: "
<< ver.bv_major << "." << ver.bv_minor
<< " Expected at least version:"
<< BPF_MAJOR_VERSION << "."
<< BPF_MINOR_VERSION);
}
// Get the size of the read buffer for this device. We will need to
// allocate the buffer of this size for packet reads.
unsigned int buf_len = 0;
if (ioctl(sock, BIOCGBLEN, &buf_len) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Unable to obtain the required"
" buffer length for reads from BPF device");
}
if (buf_len < sizeof(bpf_hdr)) {
isc_throw(SocketConfigError, "read buffer length returned by the"
" kernel for the BPF device associated with the interface"
<< iface.getName() << " is lower than the BPF header"
" length: this condition is impossible unless the"
" operating system is really broken!");
}
// Set the filter program so as we only get packets we are interested in.
struct bpf_program prog;
memset(&prog, 0, sizeof(bpf_program));
if (iface.flag_loopback_) {
prog.bf_insns = loopback_ip_udp_filter;
prog.bf_len = sizeof(loopback_ip_udp_filter) / sizeof(struct bpf_insn);
// The address family is AF_INET. It can't be hardcoded in the BPF program
// because we need to make the host to network order conversion using htonl
// and conversion can't be done within the BPF program structure as it
// doesn't work on some systems.
prog.bf_insns[1].k = htonl(AF_INET);
} else {
prog.bf_insns = ethernet_ip_udp_filter;
prog.bf_len = sizeof(ethernet_ip_udp_filter) / sizeof(struct bpf_insn);
}
// Configure the BPF program to receive unicast packets sent to the
// specified address. The program will also allow packets sent to the
// 255.255.255.255 broadcast address.
prog.bf_insns[8].k = addr.toUint32();
// Configure the BPF program to receive packets on the specified port.
prog.bf_insns[11].k = port;
// Actually set the filter program for the device.
if (ioctl(sock, BIOCSETF, &prog) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to install BPF filter"
" program");
}
// Configure the BPF device to use the immediate mode. This ensures
// that the read function returns immediately, instead of waiting
// for the kernel to fill up the buffer, which would likely cause
// read hangs.
int flag = 1;
if (ioctl(sock, BIOCIMMEDIATE, &flag) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to set promiscuous mode for"
" BPF device");
}
// Everything is ok, allocate the read buffer and return the socket
// (BPF device descriptor) to the caller.
try {
iface.resizeReadBuffer(buf_len);
} catch (...) {
close(fallback);
close(sock);
throw;
}
return (SocketInfo(addr, port, sock, fallback));
}
Pkt4Ptr
PktFilterBPF::receive(Iface& iface, const SocketInfo& socket_info) {
// When using BPF, the read buffer must be allocated for the interface.
// If it is not allocated, it is a programmatic error.
if (iface.getReadBufferSize() == 0) {
isc_throw(SocketConfigError, "socket read buffer empty"
" for the interface: " << iface.getName());
}
// First let's get some data from the fallback socket. The data will be
// discarded but we don't want the socket buffer to bloat. We get the
// packets from the socket in loop but most of the time the loop will
// end after receiving one packet. The call to recv returns immediately
// when there is no data left on the socket because the socket is
// non-blocking.
// @todo In the normal conditions, both the primary socket and the fallback
// socket are in sync as they are set to receive packets on the same
// address and port. The reception of packets on the fallback socket
// shouldn't cause significant lags in packet reception. If we find in the
// future that it does, the sort of threshold could be set for the maximum
// bytes received on the fallback socket in a single round. Further
// optimizations would include an asynchronous read from the fallback socket
// when the DHCP server is idle.
int datalen;
do {
datalen = recv(socket_info.fallbackfd_, iface.getReadBuffer(),
iface.getReadBufferSize(), 0);
} while (datalen > 0);
datalen = read(socket_info.sockfd_, iface.getReadBuffer(),
iface.getReadBufferSize());
// If negative value is returned by read(), it indicates that an
// error occurred. If returned value is 0, no data was read from the
// socket. In both cases something has gone wrong, because we expect
// that a chunk of data is there. We signal the lack of data by
// returning an empty packet.
if (datalen <= 0) {
return Pkt4Ptr();
}
datalen = BPF_WORDALIGN(datalen);
// Holds BPF header.
struct bpf_hdr bpfh;
/// @todo BPF may occasionally append more than one packet in a
/// single read. Our current libdhcp++ API is oriented towards receiving
/// one packet at the time so we just pick first usable packet here
/// and drop other packets. In the future the additional packets should
/// be queued and processed. For now, we just iterate over the packets
/// in the buffer and pick the first usable one.
int offset = 0;
while (offset < datalen) {
// Check if the BPF header fits in the reminder of the buffer.
// If it doesn't something is really wrong.
if (datalen - offset < sizeof(bpf_hdr)) {
isc_throw(SocketReadError, "packet received over the BPF device on"
" interface " << iface.getName() << " has a truncated "
" BPF header");
}
// Copy the BPF header.
memcpy(static_cast<void*>(&bpfh),
static_cast<void*>(iface.getReadBuffer()),
sizeof(bpfh));
// Check if the captured data fit into the reminder of the buffer.
// Again, something is really wrong here if it doesn't fit.
if (offset + bpfh.bh_hdrlen + bpfh.bh_caplen > datalen) {
isc_throw(SocketReadError, "packet received from the BPF device"
<< " attached to interface " << iface.getName()
<< " is truncated");
}
// Check if the whole packet has been captured.
if (bpfh.bh_caplen != bpfh.bh_datalen) {
// Not whole packet captured, proceed to next received packet.
offset = BPF_WORDALIGN(offset + bpfh.bh_hdrlen + bpfh.bh_caplen);
continue;
}
// All checks passed, let's use the packet at the offset found.
// Typically it will be at offset 0.
break;
};
// No parsable packet found, so return.
if (offset >= datalen) {
return (Pkt4Ptr());
}
// Skip the BPF header and create the buffer holding a frame.
InputBuffer buf(iface.getReadBuffer() + offset + bpfh.bh_hdrlen,
datalen - bpfh.bh_hdrlen - offset);
// @todo: This is awkward way to solve the chicken and egg problem
// whereby we don't know the offset where DHCP data start in the
// received buffer when we create the packet object. In general case,
// the IP header has variable length. The information about its length
// is stored in one of its fields. Therefore, we have to decode the
// packet to get the offset of the DHCP data. The dummy object is
// created so as we can pass it to the functions which decode IP stack
// and find actual offset of the DHCP data.
// Once we find the offset we can create another Pkt4 object from
// the reminder of the input buffer and set the IP addresses and
// ports from the dummy packet. We should consider doing it
// in some more elegant way.
Pkt4Ptr dummy_pkt = Pkt4Ptr(new Pkt4(DHCPDISCOVER, 0));
// On local loopback interface the ethernet header is not present.
// Instead, there is a 4-byte long pseudo header containing the
// address family in the host byte order. Note that this header
// is present in the received messages on OSX, but should not be
// included in the sent messages on OSX.
if (iface.flag_loopback_) {
if (buf.getLength() < BPF_LOCAL_LOOPBACK_HEADER_LEN) {
isc_throw(SocketReadError, "packet received on local loopback"
" interface " << iface.getName() << " doesn't contain"
" the pseudo header with the address family type");
}
// Advance to the position of the IP header. We don't check the
// contents of the pseudo header because the BPF filter should have
// filtered out the packets with address family other than AF_INET.
buf.setPosition(BPF_LOCAL_LOOPBACK_HEADER_LEN);
// Since we don't decode the real link-layer header we need to
// supply the hardware address ourselves.
dummy_pkt->setLocalHWAddr(HWAddrPtr(new HWAddr()));
dummy_pkt->setRemoteHWAddr(HWAddrPtr(new HWAddr()));
} else {
// If we are on the interface other than local loopback, assume
// the ethernet header. For now we don't support any other data
// link layer.
decodeEthernetHeader(buf, dummy_pkt);
}
// Decode IP/UDP headers.
decodeIpUdpHeader(buf, dummy_pkt);
// Read the DHCP data.
std::vector<uint8_t> dhcp_buf;
buf.readVector(dhcp_buf, buf.getLength() - buf.getPosition());
// Decode DHCP data into the Pkt4 object.
Pkt4Ptr pkt = Pkt4Ptr(new Pkt4(&dhcp_buf[0], dhcp_buf.size()));
// Set the appropriate packet members using data collected from
// the decoded headers.
pkt->setIndex(iface.getIndex());
pkt->setIface(iface.getName());
pkt->setLocalAddr(dummy_pkt->getLocalAddr());
pkt->setRemoteAddr(dummy_pkt->getRemoteAddr());
pkt->setLocalPort(dummy_pkt->getLocalPort());
pkt->setRemotePort(dummy_pkt->getRemotePort());
pkt->setLocalHWAddr(dummy_pkt->getLocalHWAddr());
pkt->setRemoteHWAddr(dummy_pkt->getRemoteHWAddr());
// Set time the packet was stored in the buffer.
#if (defined(BPF_TIMEVAL)) && (BPF_TIMEVAL == timeval32)
// Convert to ptime directly to avoid timeval vs
// timeval32 definitons under MacOS.
time_t time_t_secs = bpfh.bh_tstamp.tv_sec;
ptime timestamp = from_time_t(time_t_secs);
time_duration usecs(0, 0, 0, bpfh.bh_tstamp.tv_usec);
timestamp += usecs;
pkt->addPktEvent(PktEvent::SOCKET_RECEIVED, timestamp);
#else
pkt->addPktEvent(PktEvent::SOCKET_RECEIVED, bpfh.bh_tstamp);
#endif
// Set time packet was read from the buffer.
pkt->addPktEvent(PktEvent::BUFFER_READ);
return (pkt);
}
int
PktFilterBPF::send(const Iface& iface, uint16_t sockfd, const Pkt4Ptr& pkt) {
OutputBuffer buf(14);
// Some interfaces may have no HW address - e.g. loopback interface.
// For these interfaces the HW address length is 0. If this is the case,
// then we will rely on the functions which construct the IP/UDP headers
// to provide a default HW address. Otherwise, create the HW address
// object using the HW address of the interface.
if (iface.getMacLen() > 0) {
HWAddrPtr hwaddr(new HWAddr(iface.getMac(), iface.getMacLen(),
iface.getHWType()));
pkt->setLocalHWAddr(hwaddr);
}
// Loopback interface requires special treatment. It doesn't
// use the ethernet header but rather a 4-byte long pseudo header
// holding an address family type (see bpf.c in OS sources).
// On OSX, it even lacks pseudo header.
#if !defined (OS_OSX)
if (iface.flag_loopback_) {
writeAFPseudoHeader(AF_INET, buf);
}
#endif
// If this is not a loopback interface create Ethernet frame header.
if (!iface.flag_loopback_) {
// Ethernet frame header.
// Note that we don't validate whether HW addresses in 'pkt'
// are valid because they are validated by the function called.
writeEthernetHeader(pkt, buf);
}
// IP and UDP header
writeIpUdpHeader(pkt, buf);
// DHCPv4 message
buf.writeData(pkt->getBuffer().getData(), pkt->getBuffer().getLength());
int result = write(sockfd, buf.getData(), buf.getLength());
if (result < 0) {
isc_throw(SocketWriteError, "failed to send DHCPv4 packet: "
<< strerror(errno));
}
pkt->addPktEvent(PktEvent::RESPONSE_SENT);
return (0);
}
void
PktFilterBPF::writeAFPseudoHeader(const uint32_t address_family,
util::OutputBuffer& out_buf) {
// Copy address family to the temporary buffer and preserve the
// bytes order.
uint8_t af_buf[4];
memcpy(static_cast<void*>(af_buf),
static_cast<const void*>(&address_family),
sizeof(af_buf));
// Write the data into the buffer.
out_buf.writeData(af_buf, sizeof(af_buf));
}
} // end of isc::dhcp namespace
} // end of isc namespace
|