1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
// Copyright (C) 2012-2024 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>

#include <dhcp/dhcp4.h>
#include <dhcp/dhcp6.h>
#include <dhcp/option4_addrlst.h>
#include <dhcp/option4_client_fqdn.h>
#include <dhcp/option4_dnr.h>
#include <dhcp/option6_addrlst.h>
#include <dhcp/option6_client_fqdn.h>
#include <dhcp/option6_dnr.h>
#include <dhcp/option6_ia.h>
#include <dhcp/option6_iaaddr.h>
#include <dhcp/option6_iaprefix.h>
#include <dhcp/option6_pdexclude.h>
#include <dhcp/option6_status_code.h>
#include <dhcp/option_custom.h>
#include <dhcp/option_definition.h>
#include <dhcp/option_int.h>
#include <dhcp/option_int_array.h>
#include <dhcp/option_opaque_data_tuples.h>
#include <dhcp/option_classless_static_route.h>
#include <dhcp/option_string.h>
#include <dhcp/option_vendor.h>
#include <dhcp/option_vendor_class.h>
#include <util/encode/encode.h>
#include <dns/labelsequence.h>
#include <dns/name.h>
#include <util/str.h>
#include <boost/algorithm/string/classification.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <boost/algorithm/string/predicate.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <boost/algorithm/string/replace.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <boost/dynamic_bitset.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <boost/make_shared.hpp><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.
#include <sstream><--- Include file:  not found. Please note: Cppcheck does not need standard library headers to get proper results.

using namespace std;
using namespace isc::util;

namespace isc {
namespace dhcp {

OptionDefinition::OptionDefinition(const std::string& name,
                                   const uint16_t code,
                                   const std::string& space,
                                   const std::string& type,
                                   const bool array_type /* = false */)
    : name_(name),
      code_(code),
      type_(OPT_UNKNOWN_TYPE),
      array_type_(array_type),
      encapsulated_space_(""),
      record_fields_(),
      user_context_(),
      option_space_name_(space) {
    // Data type is held as enum value by this class.
    // Use the provided option type string to get the
    // corresponding enum value.
    type_ = OptionDataTypeUtil::getDataType(type);
}

OptionDefinition::OptionDefinition(const std::string& name,
                                   const uint16_t code,
                                   const std::string& space,
                                   const OptionDataType type,
                                   const bool array_type /* = false */)
    : name_(name),
      code_(code),
      type_(type),
      array_type_(array_type),
      encapsulated_space_(""),
      option_space_name_(space){
}

OptionDefinition::OptionDefinition(const std::string& name,
                                   const uint16_t code,
                                   const std::string& space,
                                   const std::string& type,
                                   const char* encapsulated_space)
    : name_(name),
      code_(code),
      // Data type is held as enum value by this class.
      // Use the provided option type string to get the
      // corresponding enum value.
      type_(OptionDataTypeUtil::getDataType(type)),
      array_type_(false),
      encapsulated_space_(encapsulated_space),
      record_fields_(),
      user_context_(),
      option_space_name_(space) {
}

OptionDefinition::OptionDefinition(const std::string& name,
                                   const uint16_t code,
                                   const std::string& space,
                                   const OptionDataType type,
                                   const char* encapsulated_space)
    : name_(name),
      code_(code),
      type_(type),
      array_type_(false),
      encapsulated_space_(encapsulated_space),
      record_fields_(),
      user_context_(),
      option_space_name_(space) {
}

OptionDefinitionPtr
OptionDefinition::create(const std::string& name,
                         const uint16_t code,
                         const std::string& space,
                         const std::string& type,
                         const bool array_type) {
    return (boost::make_shared<OptionDefinition>(name, code, space, type, array_type));
}

OptionDefinitionPtr
OptionDefinition::create(const std::string& name,
                         const uint16_t code,
                         const std::string& space,
                         const OptionDataType type,
                         const bool array_type) {
    return (boost::make_shared<OptionDefinition>(name, code, space, type, array_type));
}

OptionDefinitionPtr
OptionDefinition::create(const std::string& name,
                         const uint16_t code,
                         const std::string& space,
                         const std::string& type,
                         const char* encapsulated_space) {
    return (boost::make_shared<OptionDefinition>(name, code, space, type, encapsulated_space));
}

OptionDefinitionPtr
OptionDefinition::create(const std::string& name,
                         const uint16_t code,
                         const std::string& space,
                         const OptionDataType type,
                         const char* encapsulated_space) {
    return (boost::make_shared<OptionDefinition>(name, code, space, type, encapsulated_space));
}

bool
OptionDefinition::equals(const OptionDefinition& other) const {
    return (name_ == other.name_ &&
            code_ == other.code_ &&
            type_ == other.type_ &&
            array_type_ == other.array_type_ &&
            encapsulated_space_ == other.encapsulated_space_ &&
            record_fields_ == other.record_fields_ &&
            option_space_name_ == other.option_space_name_);
}

void
OptionDefinition::addRecordField(const std::string& data_type_name) {
    OptionDataType data_type = OptionDataTypeUtil::getDataType(data_type_name);
    addRecordField(data_type);
}

void
OptionDefinition::addRecordField(const OptionDataType data_type) {
    if (type_ != OPT_RECORD_TYPE) {
        isc_throw(isc::InvalidOperation,
                  "'record' option type must be used instead of '"
                      << OptionDataTypeUtil::getDataTypeName(type_)
                      << "' to add data fields to the record");
    }
    if (data_type >= OPT_RECORD_TYPE ||
        data_type == OPT_ANY_ADDRESS_TYPE ||
        data_type == OPT_EMPTY_TYPE) {
        isc_throw(isc::BadValue,
                  "attempted to add invalid data type '"
                      << OptionDataTypeUtil::getDataTypeName(data_type)
                      << "' to the record.");
    }
    record_fields_.push_back(data_type);
}

OptionPtr
OptionDefinition::optionFactory(Option::Universe u,
                                uint16_t type,
                                OptionBufferConstIter begin,
                                OptionBufferConstIter end,
                                bool convenient_notation) const {

    try {
        // Some of the options are represented by the specialized classes derived
        // from Option class (e.g. IA_NA, IAADDR). Although, they can be also
        // represented by the generic classes, we want the object of the specialized
        // type to be returned. Therefore, we first check that if we are dealing
        // with such an option. If the instance is returned we just exit at this
        // point. If not, we will search for a generic option type to return.
        OptionPtr option = factorySpecialFormatOption(u, begin, end, convenient_notation);
        if (option) {
            return (option);
        }

        switch (type_) {
        case OPT_EMPTY_TYPE:
            if (getEncapsulatedSpace().empty()) {
                return (factoryEmpty(u, type));
            } else {
                return (OptionPtr(new OptionCustom(*this, u, begin, end)));
            }

        case OPT_BINARY_TYPE:
        // If this is Internal type, and it wasn't handled by factorySpecialFormatOption() before,
        // let's treat it like normal Binary type.
        case OPT_INTERNAL_TYPE:
            return (factoryGeneric(u, type, begin, end));

        case OPT_UINT8_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<uint8_t>(u, type, begin, end) :
                    factoryInteger<uint8_t>(u, type, getEncapsulatedSpace(),
                                            begin, end));

        case OPT_INT8_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<int8_t>(u, type, begin, end) :
                    factoryInteger<int8_t>(u, type, getEncapsulatedSpace(),
                                           begin, end));

        case OPT_UINT16_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<uint16_t>(u, type, begin, end) :
                    factoryInteger<uint16_t>(u, type, getEncapsulatedSpace(),
                                             begin, end));

        case OPT_INT16_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<uint16_t>(u, type, begin, end) :
                    factoryInteger<int16_t>(u, type, getEncapsulatedSpace(),
                                            begin, end));

        case OPT_UINT32_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<uint32_t>(u, type, begin, end) :
                    factoryInteger<uint32_t>(u, type, getEncapsulatedSpace(),
                                             begin, end));

        case OPT_INT32_TYPE:
            return (array_type_ ?
                    factoryIntegerArray<uint32_t>(u, type, begin, end) :
                    factoryInteger<int32_t>(u, type, getEncapsulatedSpace(),
                                            begin, end));

        case OPT_IPV4_ADDRESS_TYPE:
            // If definition specifies that an option is an array
            // of IPv4 addresses we return an instance of specialized
            // class (OptionAddrLst4). For non-array types there is no
            // specialized class yet implemented so we drop through
            // to return an instance of OptionCustom.
            if (array_type_) {
                return (factoryAddrList4(type, begin, end));
            }
            break;

        case OPT_IPV6_ADDRESS_TYPE:
            // Handle array type only here (see comments for
            // OPT_IPV4_ADDRESS_TYPE case).
            if (array_type_) {
                return (factoryAddrList6(type, begin, end));
            }
            break;

        case OPT_STRING_TYPE:
            return (OptionPtr(new OptionString(u, type, begin, end)));

        case OPT_TUPLE_TYPE:
            // Handle array type only here (see comments for
            // OPT_IPV4_ADDRESS_TYPE case).
            if (array_type_) {
                return (factoryOpaqueDataTuples(u, type, begin, end));
            }
            break;

        default:
            // Do nothing. We will return generic option a few lines down.
            ;
        }
        return (OptionPtr(new OptionCustom(*this, u, begin, end)));
    } catch (const SkipThisOptionError&) {
        // We need to throw this one as is.
        throw;
    } catch (const SkipRemainingOptionsError&) {
        // We need to throw this one as is.
        throw;
    } catch (const Exception& ex) {
        isc_throw(InvalidOptionValue, ex.what());
    }
}

OptionPtr
OptionDefinition::optionFactory(Option::Universe u, uint16_t type,
                                const OptionBuffer& buf) const {
    return (optionFactory(u, type, buf.begin(), buf.end()));
}

OptionPtr
OptionDefinition::optionFactory(Option::Universe u, uint16_t type,
                                const std::vector<std::string>& values) const {
    OptionBuffer buf;
    if (!array_type_ && type_ != OPT_RECORD_TYPE) {
        if (values.empty()) {
            if (type_ != OPT_EMPTY_TYPE) {
                isc_throw(InvalidOptionValue, "no option value specified");
            }
        } else if (type_ == OPT_INTERNAL_TYPE) {
            // If an Option of type Internal is configured using csv-format=true, it means it is
            // convenient notation option config that needs special parsing. Let's treat it like
            // String type. optionFactory() will be called with convenient_notation flag set to
            // true, so that the factory will have a chance to handle it in a special way.

            // At this stage any escape backslash chars were lost during last call of
            // isc::util::str::tokens() inside of
            // OptionDataParser::createOption(ConstElementPtr option_data), so we must
            // restore them. Some INTERNAL options may use escaped delimiters, e.g. DNR options.
            // Values are concatenated back to comma separated format and will be written to
            // the OptionBuffer as one String type option.
            std::ostringstream stream;
            bool first = true;
            for (auto val : values) {
                boost::algorithm::replace_all(val, ",", "\\,");
                if (first) {
                    first = false;
                } else {
                    stream << ",";
                }

                stream << val;
            }

            writeToBuffer(u, stream.str(), OPT_STRING_TYPE, buf);
        } else {
            writeToBuffer(u, util::str::trim(values[0]), type_, buf);
        }
    } else if (array_type_ && type_ != OPT_RECORD_TYPE) {
        for (size_t i = 0; i < values.size(); ++i) {
            writeToBuffer(u, util::str::trim(values[i]), type_, buf);
        }
    } else if (type_ == OPT_RECORD_TYPE) {
        const RecordFieldsCollection& records = getRecordFields();
        if (records.size() > values.size()) {
            isc_throw(InvalidOptionValue, "number of data fields for the option"
                      << " type '" <<  getCode() << "' is greater than number"
                      << " of values provided.");
        }
        for (size_t i = 0; i < records.size(); ++i) {
            writeToBuffer(u, util::str::trim(values[i]), records[i], buf);
        }
        if (array_type_ && (values.size() > records.size())) {
            for (size_t i = records.size(); i < values.size(); ++i) {
                writeToBuffer(u, util::str::trim(values[i]),
                              records.back(), buf);
            }
        }
    }
    return (optionFactory(u, type, buf.begin(), buf.end(), (type_ == OPT_INTERNAL_TYPE)));
}

void
OptionDefinition::validate() const {

    using namespace boost::algorithm;

    std::ostringstream err_str;

    // Allowed characters in the option name are: lower or
    // upper case letters, digits, underscores and hyphens.
    // Empty option spaces are not allowed.
    if (!all(name_, boost::is_from_range('a', 'z') ||
             boost::is_from_range('A', 'Z') ||
             boost::is_digit() ||
             boost::is_any_of(std::string("-_"))) ||
        name_.empty() ||
        // Hyphens and underscores are not allowed at the beginning
        // and at the end of the option name.
        all(find_head(name_, 1), boost::is_any_of(std::string("-_"))) ||
        all(find_tail(name_, 1), boost::is_any_of(std::string("-_")))) {
        err_str << "invalid option name '" << name_ << "'";

    } else if (!OptionSpace::validateName(option_space_name_)) {
        err_str << "invalid option space name: '"
                << option_space_name_ << "'";

    } else if (!encapsulated_space_.empty() &&
               !OptionSpace::validateName(encapsulated_space_)) {
        err_str << "invalid encapsulated option space name: '"
                << encapsulated_space_ << "'";

    } else if (type_ >= OPT_UNKNOWN_TYPE) {
        // Option definition must be of a known type.
        err_str << "option type " << type_ << " not supported.";

    } else if (type_ == OPT_RECORD_TYPE) {
        // At least two data fields should be added to the record. Otherwise
        // non-record option definition could be used.
        if (getRecordFields().size() < 2) {
            err_str << "invalid number of data fields: "
                    << getRecordFields().size()
                    << " specified for the option of type 'record'. Expected at"
                    << " least 2 fields.";

        } else {
            // If the number of fields is valid we have to check if their order
            // is valid too. We check that string or binary data fields are not
            // laid before other fields. But we allow that they are laid at the
            // end of an option.
            const RecordFieldsCollection& fields = getRecordFields();
            for (RecordFieldsConstIter it = fields.begin();
                 it != fields.end(); ++it) {
                if (*it == OPT_STRING_TYPE &&
                    it < fields.end() - 1) {
                    err_str << "string data field can't be laid before data"
                            << " fields of other types.";
                    break;
                }
                if (*it == OPT_BINARY_TYPE &&
                    it < fields.end() - 1) {
                    err_str << "binary data field can't be laid before data"
                            << " fields of other types.";
                    break;
                }
                // Empty type is not allowed within a record.
                if (*it == OPT_EMPTY_TYPE) {
                    err_str << "empty data type can't be stored as a field in"
                            << " an option record.";
                    break;
                }
                // Internal type is not allowed within a record.
                if (*it == OPT_INTERNAL_TYPE) {
                    err_str << "internal data type can't be stored as a field in"
                            << " an option record.";
                    break;
                }
            }
            // If the array flag is set the last field is an array.
            if (err_str.str().empty() && array_type_) {
                const OptionDataType& last_type = fields.back();
                if (last_type == OPT_STRING_TYPE) {
                    err_str
                        << "array of strings is not a valid option definition.";
                } else if (last_type == OPT_BINARY_TYPE) {
                    err_str << "array of binary values is not a valid option "
                               "definition.";
                }
                // Empty type was already checked.
            }
        }

    } else if (array_type_) {
        if (type_ == OPT_STRING_TYPE) {
            // Array of strings is not allowed because there is no way
            // to determine the size of a particular string and thus there
            // it no way to tell when other data fields begin.
            err_str << "array of strings is not a valid option definition.";
        } else if (type_ == OPT_BINARY_TYPE) {
            err_str << "array of binary values is not"
                    << " a valid option definition.";

        } else if (type_ == OPT_EMPTY_TYPE) {
            err_str << "array of empty value is not"
                    << " a valid option definition.";

        } else if (type_ == OPT_INTERNAL_TYPE) {
            err_str << "array of internal type value is not"
                    << " a valid option definition.";

        }
    }

    // Non-empty error string means that we have hit the error. We throw
    // exception and include error string.
    if (!err_str.str().empty()) {
        isc_throw(MalformedOptionDefinition, err_str.str());
    }
}

bool
OptionDefinition::haveCompressedFqdnListFormat() const {
    return (haveType(OPT_FQDN_TYPE) && getArrayType());
}

bool
OptionDefinition::convertToBool(const std::string& value_str) const {
    // Case-insensitive check that the input is one of: "true" or "false".
    if (boost::iequals(value_str, "true")) {
        return (true);

    } else if (boost::iequals(value_str, "false")) {
        return (false);

    }

    // The input string is neither "true" nor "false", so let's check
    // if it is not an integer wrapped in a string.
    int result;
    try {
        result = boost::lexical_cast<int>(value_str);

    } catch (const boost::bad_lexical_cast&) {
        isc_throw(BadDataTypeCast, "unable to covert the value '"
                  << value_str << "' to boolean data type");
    }
    // The boolean value is encoded in DHCP option as 0 or 1. Therefore,
    // we only allow a user to specify those values for options which
    // have boolean fields.
    if (result != 1 && result != 0) {
        isc_throw(BadDataTypeCast, "unable to convert '" << value_str
                  << "' to boolean data type");
    }
    return (static_cast<bool>(result));
}

template<typename T>
T
OptionDefinition::lexicalCastWithRangeCheck(const std::string& value_str)
    const {
    // The lexical cast should be attempted when converting to an integer
    // value only.
    if (!OptionDataTypeTraits<T>::integer_type) {
        isc_throw(BadDataTypeCast,
                  "must not convert '" << value_str
                  << "' to non-integer data type");
    }

    // We use the 64-bit value here because it has wider range than
    // any other type we use here and it allows to detect out of
    // bounds conditions e.g. negative value specified for uintX_t
    // data type. Obviously if the value exceeds the limits of int64
    // this function will not handle that properly.
    int64_t result = 0;
    try {
        result = boost::lexical_cast<int64_t>(value_str);

    } catch (const boost::bad_lexical_cast&) {
        // boost::lexical_cast does not handle hexadecimal
        // but stringstream does so do it the hard way.
        std::stringstream ss;
        ss << std::hex << value_str;
        ss >> result;
        if (ss.fail() || !ss.eof()) {
            isc_throw(BadDataTypeCast, "unable to convert the value '"
                      << value_str << "' to integer data type");
        }
    }
    // Perform range checks.
    if (OptionDataTypeTraits<T>::integer_type) {
        if (result > numeric_limits<T>::max() ||
            result < numeric_limits<T>::min()) {
            isc_throw(BadDataTypeCast, "unable to convert '"
                      << value_str << "' to numeric type. This value is "
                         "expected to be in the range of "
                      << +numeric_limits<T>::min() << ".."
                      << +numeric_limits<T>::max());
        }
    }
    return (static_cast<T>(result));
}

void
OptionDefinition::writeToBuffer(Option::Universe u,
                                const std::string& value,
                                const OptionDataType type,
                                OptionBuffer& buf) const {
    // We are going to write value given by value argument to the buffer.
    // The actual type of the value is given by second argument. Check
    // this argument to determine how to write this value to the buffer.
    switch (type) {
    case OPT_BINARY_TYPE:
        OptionDataTypeUtil::writeBinary(value, buf);
        return;
    case OPT_BOOLEAN_TYPE:
        // We encode the true value as 1 and false as 0 on 8 bits.
        // That way we actually waste 7 bits but it seems to be the
        // simpler way to encode boolean.
        // @todo Consider if any other encode methods can be used.
        OptionDataTypeUtil::writeBool(convertToBool(value), buf);
        return;
    case OPT_INT8_TYPE:
        OptionDataTypeUtil::writeInt<uint8_t>
            (lexicalCastWithRangeCheck<int8_t>(value),
                                              buf);
        return;
    case OPT_INT16_TYPE:
        OptionDataTypeUtil::writeInt<uint16_t>
            (lexicalCastWithRangeCheck<int16_t>(value),
                                               buf);
        return;
    case OPT_INT32_TYPE:
        OptionDataTypeUtil::writeInt<uint32_t>
            (lexicalCastWithRangeCheck<int32_t>(value),
                                               buf);
        return;
    case OPT_UINT8_TYPE:
        OptionDataTypeUtil::writeInt<uint8_t>
            (lexicalCastWithRangeCheck<uint8_t>(value),
                                              buf);
        return;
    case OPT_UINT16_TYPE:
        OptionDataTypeUtil::writeInt<uint16_t>
            (lexicalCastWithRangeCheck<uint16_t>(value),
                                               buf);
        return;
    case OPT_UINT32_TYPE:
        OptionDataTypeUtil::writeInt<uint32_t>
            (lexicalCastWithRangeCheck<uint32_t>(value),
                                               buf);
        return;
    case OPT_IPV4_ADDRESS_TYPE:
    case OPT_IPV6_ADDRESS_TYPE:
        {
            asiolink::IOAddress address(value);
            if (!address.isV4() && !address.isV6()) {
                isc_throw(BadDataTypeCast, "provided address "
                          << address
                          << " is not a valid IPv4 or IPv6 address.");
            }
            OptionDataTypeUtil::writeAddress(address, buf);
            return;
        }
    case OPT_IPV6_PREFIX_TYPE:
        {
            std::string txt = value;

            // first let's remove any whitespaces
            boost::erase_all(txt, " "); // space
            boost::erase_all(txt, "\t"); // tabulation

            // Is this prefix/len notation?
            size_t pos = txt.find("/");

            if (pos == string::npos) {
                isc_throw(BadDataTypeCast, "provided address/prefix "
                          << value
                          << " is not valid.");
            }

            std::string txt_address = txt.substr(0, pos);
            isc::asiolink::IOAddress address = isc::asiolink::IOAddress(txt_address);
            if (!address.isV6()) {
                isc_throw(BadDataTypeCast, "provided address "
                          << txt_address
                          << " is not a valid IPv4 or IPv6 address.");
            }

            std::string txt_prefix = txt.substr(pos + 1);
            uint8_t len = 0;
            try {
                // start with the first character after /
                len = lexicalCastWithRangeCheck<uint8_t>(txt_prefix);
            } catch (...)  {
                isc_throw(BadDataTypeCast, "provided prefix "
                          << txt_prefix
                          << " is not valid.");
            }

            // Write a prefix.
            OptionDataTypeUtil::writePrefix(PrefixLen(len), address, buf);

            return;
        }
    case OPT_PSID_TYPE:
        {
        std::string txt = value;

        // first let's remove any whitespaces
        boost::erase_all(txt, " "); // space
        boost::erase_all(txt, "\t"); // tabulation

        // Is this prefix/len notation?
        size_t pos = txt.find("/");

        if (pos == string::npos) {
            isc_throw(BadDataTypeCast, "provided PSID value "
                      << value << " is not valid");
        }

        const std::string txt_psid = txt.substr(0, pos);
        const std::string txt_psid_len = txt.substr(pos + 1);

        uint16_t psid = 0;
        uint8_t psid_len = 0;

        try {
            psid = lexicalCastWithRangeCheck<uint16_t>(txt_psid);
        } catch (...)  {
            isc_throw(BadDataTypeCast, "provided PSID "
                      << txt_psid << " is not valid");
        }

        try {
            psid_len = lexicalCastWithRangeCheck<uint8_t>(txt_psid_len);
        } catch (...)  {
            isc_throw(BadDataTypeCast, "provided PSID length "
                      << txt_psid_len << " is not valid");
        }

        OptionDataTypeUtil::writePsid(PSIDLen(psid_len), PSID(psid), buf);
        return;
    }
    case OPT_STRING_TYPE:
        OptionDataTypeUtil::writeString(value, buf);
        return;
    case OPT_FQDN_TYPE:
        OptionDataTypeUtil::writeFqdn(value, buf);
        return;
    case OPT_TUPLE_TYPE:
    {
        // In case of V4_SZTP_REDIRECT option #143, bootstrap-server-list is formatted
        // as a list of tuples "uri-length;URI" where uri-length is coded on 2 octets,
        // which is not typical for V4 Universe.
        OpaqueDataTuple::LengthFieldType lft = getCode() == DHO_V4_SZTP_REDIRECT
                                                   ? OpaqueDataTuple::LENGTH_2_BYTES
                                                   : OptionDataTypeUtil::getTupleLenFieldType(u);
        OptionDataTypeUtil::writeTuple(value, lft, buf);
        return;
    }
    default:
        // We hit this point because invalid option data type has been specified
        // This may be the case because 'empty' or 'record' data type has been
        // specified. We don't throw exception here because it will be thrown
        // at the exit point from this function.
        ;
    }
    isc_throw(isc::BadValue, "attempt to write invalid option data field type"
              " into the option buffer: " << type);

}

OptionPtr
OptionDefinition::factoryAddrList4(uint16_t type,
                                  OptionBufferConstIter begin,
                                  OptionBufferConstIter end) {
    boost::shared_ptr<Option4AddrLst> option(new Option4AddrLst(type, begin,
                                                                end));
    return (option);
}

OptionPtr
OptionDefinition::factoryAddrList6(uint16_t type,
                                   OptionBufferConstIter begin,
                                   OptionBufferConstIter end) {
    boost::shared_ptr<Option6AddrLst> option(new Option6AddrLst(type, begin,
                                                                end));
    return (option);
}


OptionPtr
OptionDefinition::factoryEmpty(Option::Universe u, uint16_t type) {
    OptionPtr option(new Option(u, type));
    return (option);
}

OptionPtr
OptionDefinition::factoryGeneric(Option::Universe u, uint16_t type,
                                 OptionBufferConstIter begin,
                                 OptionBufferConstIter end) {
    OptionPtr option(new Option(u, type, begin, end));
    return (option);
}

OptionPtr
OptionDefinition::factoryIA6(uint16_t type,
                             OptionBufferConstIter begin,
                             OptionBufferConstIter end) {
    if (std::distance(begin, end) < Option6IA::OPTION6_IA_LEN) {
        isc_throw(isc::OutOfRange, "input option buffer has invalid size,"
                  << " expected at least " << Option6IA::OPTION6_IA_LEN
                  << " bytes");
    }
    boost::shared_ptr<Option6IA> option(new Option6IA(type, begin, end));
    return (option);
}

OptionPtr
OptionDefinition::factoryIAAddr6(uint16_t type,
                                 OptionBufferConstIter begin,
                                 OptionBufferConstIter end) {
    if (std::distance(begin, end) < Option6IAAddr::OPTION6_IAADDR_LEN) {
        isc_throw(isc::OutOfRange,
                  "input option buffer has invalid size, expected at least "
                  << Option6IAAddr::OPTION6_IAADDR_LEN << " bytes");
    }
    boost::shared_ptr<Option6IAAddr> option(new Option6IAAddr(type, begin,
                                                              end));
    return (option);
}

OptionPtr
OptionDefinition::factoryIAPrefix6(uint16_t type,
                                 OptionBufferConstIter begin,
                                 OptionBufferConstIter end) {
    if (std::distance(begin, end) < Option6IAPrefix::OPTION6_IAPREFIX_LEN) {
        isc_throw(isc::OutOfRange,
                  "input option buffer has invalid size, expected at least "
                  << Option6IAPrefix::OPTION6_IAPREFIX_LEN << " bytes");
    }
    boost::shared_ptr<Option6IAPrefix> option(new Option6IAPrefix(type, begin,
                                                                  end));
    return (option);
}

OptionPtr
OptionDefinition::factoryOpaqueDataTuples(Option::Universe u,
                                          uint16_t type,
                                          OptionBufferConstIter begin,
                                          OptionBufferConstIter end) {
    boost::shared_ptr<OptionOpaqueDataTuples>
        option(new OptionOpaqueDataTuples(u, type, begin, end));

    return (option);
}

OptionPtr
OptionDefinition::factoryOpaqueDataTuples(Option::Universe u,
                                          uint16_t type,
                                          OptionBufferConstIter begin,
                                          OptionBufferConstIter end,
                                          OpaqueDataTuple::LengthFieldType length_field_type) {
    boost::shared_ptr<OptionOpaqueDataTuples>
        option(new OptionOpaqueDataTuples(u, type, begin, end, length_field_type));

    return (option);
}

OptionPtr
OptionDefinition::factoryFqdnList(Option::Universe u,
                                  OptionBufferConstIter begin,
                                  OptionBufferConstIter end) const {

    const std::vector<uint8_t> data(begin, end);
    if (data.empty()) {
        isc_throw(InvalidOptionValue, "FQDN list option has invalid length of 0");
    }
    InputBuffer in_buf(static_cast<const void*>(&data[0]), data.size());
    std::vector<uint8_t> out_buf;
    out_buf.reserve(data.size());
    while (in_buf.getPosition() < in_buf.getLength()) {
        // Reuse readFqdn and writeFqdn code but on the whole buffer
        // so the DNS name code handles compression for us.
        try {
            isc::dns::Name name(in_buf);
            isc::dns::LabelSequence labels(name);
            if (labels.getDataLength() > 0) {
                size_t read_len = 0;
                const uint8_t* label = labels.getData(&read_len);
                out_buf.insert(out_buf.end(), label, label + read_len);
            }
        } catch (const isc::Exception& ex) {
            isc_throw(InvalidOptionValue, ex.what());
        }
    }
    return OptionPtr(new OptionCustom(*this, u,
                                      out_buf.begin(), out_buf.end()));
}

OptionPtr
OptionDefinition::factorySpecialFormatOption(Option::Universe u,
                                             OptionBufferConstIter begin,
                                             OptionBufferConstIter end,
                                             bool convenient_notation) const {
    if ((u == Option::V6) && haveSpace(DHCP6_OPTION_SPACE)) {
        switch (getCode()) {
        case D6O_IA_NA:
        case D6O_IA_PD:
            // Record of 3 uint32, no array.
            return (factoryIA6(getCode(), begin, end));

        case D6O_IAADDR:
            // Record of an IPv6 address followed by 2 uint32, no array.
            return (factoryIAAddr6(getCode(), begin, end));

        case D6O_IAPREFIX:
            // Record of 2 uint32, one uint8 and an IPv6 address, no array.
            return (factoryIAPrefix6(getCode(), begin, end));

        case D6O_CLIENT_FQDN:
            // Record of one uint8 and one FQDN, no array.
            return (OptionPtr(new Option6ClientFqdn(begin, end)));

        case D6O_VENDOR_OPTS:
            // Type uint32.
            // Vendor-Specific Information (option code 17).
            return (OptionPtr(new OptionVendor(Option::V6, begin, end)));

        case D6O_VENDOR_CLASS:
            // Record of one uint32 and one string.
            // Vendor Class (option code 16).
            return (OptionPtr(new OptionVendorClass(Option::V6, begin, end)));

        case D6O_STATUS_CODE:
            // Record of one uint16 and one string.
            // Status Code (option code 13).
            return (OptionPtr(new Option6StatusCode(begin, end)));

        case D6O_BOOTFILE_PARAM:
            // Array of tuples.
            // Bootfile params (option code 60).
            return (factoryOpaqueDataTuples(Option::V6, getCode(), begin, end));

        case D6O_PD_EXCLUDE:
            // Type IPv6 prefix.
            // Prefix Exclude (option code 67),
            return (OptionPtr(new Option6PDExclude(begin, end)));

        case D6O_V6_DNR:
            return (OptionPtr(new Option6Dnr(begin, end, convenient_notation)));

        default:
            break;
        }
    } else if ((u == Option::V4) && haveSpace(DHCP4_OPTION_SPACE)) {
        switch (getCode()) {
        case DHO_SERVICE_SCOPE:
            // Record of a boolean and a string.
            return (OptionPtr(new Option4SlpServiceScope(begin, end)));

        case DHO_FQDN:
            // Record of 3 uint8 and a FQDN, no array.
            return (OptionPtr(new Option4ClientFqdn(begin, end)));

        case DHO_CLASSLESS_STATIC_ROUTE:
            return (OptionPtr(new OptionClasslessStaticRoute(begin, end, convenient_notation)));

        case DHO_VIVCO_SUBOPTIONS:
            // Record of uint32 followed by binary.
            // V-I Vendor Class (option code 124).
            return (OptionPtr(new OptionVendorClass(Option::V4, begin, end)));

        case DHO_VIVSO_SUBOPTIONS:
            // Type uint32.
            // Vendor-Specific Information (option code 125).
            return (OptionPtr(new OptionVendor(Option::V4, begin, end)));

        case DHO_V4_SZTP_REDIRECT:
            // Array of tuples.
            // DHCPv4 SZTP Redirect Option (option code 143).
            return (factoryOpaqueDataTuples(Option::V4, getCode(), begin, end, OpaqueDataTuple::LENGTH_2_BYTES));

        case DHO_V4_DNR:
            return (OptionPtr(new Option4Dnr(begin, end, convenient_notation)));

        default:
            break;
        }
    }
    if ((u == Option::V4) && haveCompressedFqdnListFormat()) {
        return (factoryFqdnList(Option::V4, begin, end));
    }
    return (OptionPtr());
}

} // end of isc::dhcp namespace
} // end of isc namespace